THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 10

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 13, 1998

Pull Back Constructions

Given a vector bundle and a smooth map f on manifolds:

we can define a bundle $f^*(E) \to X$ by the requirement that the diagram commutes:

$$f^{*}(E) \xrightarrow{f} E$$

$$\downarrow p \qquad \downarrow \pi$$

$$X \xrightarrow{f} B$$

where \hat{f} is an isomorphisms on fibers. Thus $f^*(E)|_x \cong E|_{f(x)}$. The construction: Define the total space

$$f^*(E) = \{(x, e) \in X \times E | f(x) = \pi(e) \} \subset X \times E.$$

Then $p: f^*(E) \to X$ is given by $(x, e) \mapsto x$. So $p^{-1}(x) = \{(x, e) | \pi(e) = f(x)\} = E_{f(x)}$.

For local triviality of $f^*(E)$: Let $E|_{U_\alpha} \xrightarrow{\simeq^{\Psi}} U \times \mathbb{R}^n$ be the local trivialization and $V = f^{-1}(U) \subset X$.

Claim.

•
$$f^*(E)|_V \subset V \times E|_U$$

• $f^*(E)|_V \cong V \times \mathbb{R}^n (\text{using } \Psi)$

Exercise 1. Prove the above claim.

Exercise 2. Show that if $E = B \times \mathbb{R}^n$, then $f^*(E) = X \times \mathbb{R}^n$.

For transition functions: If $\{V_{\alpha}\}$ is an open cover for X such that $\{U_{\alpha} = f(V_{\alpha})\}$ is a cover of B and such that bundles are locally trivial, then the transition functions related by

$$g_{\alpha\beta}^f(x) = (f^*g_{\alpha\beta})(x) = g_{\alpha\beta}(f(x)).$$

Exercise 3. Prove the above equations.

Note. There is no corresponding construction for maps $f: B \to X$, that is, given

we cannot define a bundle $f_*(E) \to X$ by $f_*(E)|_x = E|_{f^{-1}(x)}$ (for example, if f is not 1-1, then the failure of this recipe is clear)!

Good Exercise 4 (Eugene Lerman). Consider

Show that

- (a) $\pi^*(E)$ is a bundle over B.
- (b) $\pi^*(E) \cong E \oplus E$.

Exercise 5. Suppose that we have a bundle map between two bundles

such that \hat{f} is an isomorphism on fibers. By the above construction applied to

we have a pullback $f^*(E)$. Show that $f^*(E) \cong E'$.

Corollory. $f^*(E)$ is uniquely defined!

Theorem 1. (Key Result): Suppose we have

$$X \xrightarrow{f_0} B$$

with $f_0 \simeq f_1$ (homotopic), then $f_0^*(E) \cong f_1^*(E)$. (That is, homotopic maps produce isomorphic pullback bundles.)

Proof: (Bott & Tu) Suppose $f_t^*(E) \cong F$, for some f and $t \in [0, 1]$.

Claim. We can find $I_{\epsilon} = (t - \epsilon, t + \epsilon)$ such that $f_s^*(t) \cong F$, $\forall s \in I_{\epsilon}$.

Then we can cover [0, 1] with finite number of intervals.

Hence $f_0^*(E) \cong F \cong f_1^*(E)$. \square

Proof of Claim: Look at bundles on $X \times I$:

Then we can get $\operatorname{Hom}(\pi^*(F), f^*(E))$ on $X \times I$ and $\operatorname{Iso}(\pi^*(F), f^*(E)) \subset \operatorname{Hom}(\pi^*(F), f^*(E))$. If $f_t^*(E) \cong F$, then $\operatorname{Hom}(\pi^*(F), f^*(E))|_{X \times \{t\}}$ has a section, say,

$$\sigma: X \times \{t\} \to \operatorname{Iso}(\pi^*(F), f^*(E))|_{X \times \{t\}} \subset \operatorname{Hom}(\pi^*(F), f^*(E))|_{X \times \{t\}},$$

where $\operatorname{Hom}(\pi^*(F), f^*(E))|_{X \times \{t\}} = \operatorname{Hom}(\pi^*(F)|_{X \times \{t\}}, f^*(E)|_{X \times \{t\}}).$

To prove our claim, we must show

- (a) σ extends to $X \times I_{\epsilon}$.
- (b) The extension remains in Iso \subset Hom.

For (a), we have the proposition:

Proposition. For any vector bundle $V \to X \times I$, if $\sigma : X \times \{t\} \to V|_{X \times \{t\}}$ is a smooth section, then σ can extend to $X \times I_{\epsilon}$, for some ϵ .

Proof: Temporarily omitted. \square

But then, (b) follows easily, since by continuity σ will remain in Iso on a suitably small strip I_{ϵ} . \square

Corollory. If B is contractible, then $E \to B$ is trivial.

Exercise 6. Using the above corollary to analogue bundles over S^n .

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address: bradlow@math.uiuc.edu}$