THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 10 Professor Steven Bradlow Class Notes From Math 433 University of Illinois at Urbana-Champaign February 13, 1998 ## **Pull Back Constructions** Given a vector bundle and a smooth map f on manifolds: we can define a bundle $f^*(E) \to X$ by the requirement that the diagram commutes: $$f^{*}(E) \xrightarrow{f} E$$ $$\downarrow p \qquad \downarrow \pi$$ $$X \xrightarrow{f} B$$ where \hat{f} is an isomorphisms on fibers. Thus $f^*(E)|_x \cong E|_{f(x)}$. The construction: Define the total space $$f^*(E) = \{(x, e) \in X \times E | f(x) = \pi(e) \} \subset X \times E.$$ Then $p: f^*(E) \to X$ is given by $(x, e) \mapsto x$. So $p^{-1}(x) = \{(x, e) | \pi(e) = f(x)\} = E_{f(x)}$. For local triviality of $f^*(E)$: Let $E|_{U_\alpha} \xrightarrow{\simeq^{\Psi}} U \times \mathbb{R}^n$ be the local trivialization and $V = f^{-1}(U) \subset X$. ## Claim. • $$f^*(E)|_V \subset V \times E|_U$$ • $f^*(E)|_V \cong V \times \mathbb{R}^n (\text{using } \Psi)$ Exercise 1. Prove the above claim. Exercise 2. Show that if $E = B \times \mathbb{R}^n$, then $f^*(E) = X \times \mathbb{R}^n$. For transition functions: If $\{V_{\alpha}\}$ is an open cover for X such that $\{U_{\alpha} = f(V_{\alpha})\}$ is a cover of B and such that bundles are locally trivial, then the transition functions related by $$g_{\alpha\beta}^f(x) = (f^*g_{\alpha\beta})(x) = g_{\alpha\beta}(f(x)).$$ Exercise 3. Prove the above equations. *Note.* There is no corresponding construction for maps $f: B \to X$, that is, given we cannot define a bundle $f_*(E) \to X$ by $f_*(E)|_x = E|_{f^{-1}(x)}$ (for example, if f is not 1-1, then the failure of this recipe is clear)! Good Exercise 4 (Eugene Lerman). Consider Show that - (a) $\pi^*(E)$ is a bundle over B. - (b) $\pi^*(E) \cong E \oplus E$. Exercise 5. Suppose that we have a bundle map between two bundles such that \hat{f} is an isomorphism on fibers. By the above construction applied to we have a pullback $f^*(E)$. Show that $f^*(E) \cong E'$. Corollory. $f^*(E)$ is uniquely defined! Theorem 1. (Key Result): Suppose we have $$X \xrightarrow{f_0} B$$ with $f_0 \simeq f_1$ (homotopic), then $f_0^*(E) \cong f_1^*(E)$. (That is, homotopic maps produce isomorphic pullback bundles.) **Proof:** (Bott & Tu) Suppose $f_t^*(E) \cong F$, for some f and $t \in [0, 1]$. **Claim.** We can find $I_{\epsilon} = (t - \epsilon, t + \epsilon)$ such that $f_s^*(t) \cong F$, $\forall s \in I_{\epsilon}$. Then we can cover [0, 1] with finite number of intervals. Hence $f_0^*(E) \cong F \cong f_1^*(E)$. \square **Proof of Claim:** Look at bundles on $X \times I$: Then we can get $\operatorname{Hom}(\pi^*(F), f^*(E))$ on $X \times I$ and $\operatorname{Iso}(\pi^*(F), f^*(E)) \subset \operatorname{Hom}(\pi^*(F), f^*(E))$. If $f_t^*(E) \cong F$, then $\operatorname{Hom}(\pi^*(F), f^*(E))|_{X \times \{t\}}$ has a section, say, $$\sigma: X \times \{t\} \to \operatorname{Iso}(\pi^*(F), f^*(E))|_{X \times \{t\}} \subset \operatorname{Hom}(\pi^*(F), f^*(E))|_{X \times \{t\}},$$ where $\operatorname{Hom}(\pi^*(F), f^*(E))|_{X \times \{t\}} = \operatorname{Hom}(\pi^*(F)|_{X \times \{t\}}, f^*(E)|_{X \times \{t\}}).$ To prove our claim, we must show - (a) σ extends to $X \times I_{\epsilon}$. - (b) The extension remains in Iso \subset Hom. For (a), we have the proposition: **Proposition.** For any vector bundle $V \to X \times I$, if $\sigma : X \times \{t\} \to V|_{X \times \{t\}}$ is a smooth section, then σ can extend to $X \times I_{\epsilon}$, for some ϵ . **Proof**: Temporarily omitted. \square But then, (b) follows easily, since by continuity σ will remain in Iso on a suitably small strip I_{ϵ} . \square Corollory. If B is contractible, then $E \to B$ is trivial. Exercise 6. Using the above corollary to analogue bundles over S^n . 273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address: bradlow@math.uiuc.edu}$