THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 11

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 16, 1998

One of the central problems in vector bundles is the following classification problem. Given a space B and $n \in \mathbb{N}$, describe, up to isomorphism, all vector bundles of rank n over B. This is denoted by $\operatorname{Vect}_n(B)$.

Exercise 1. Using a two patch covering of S^1 , examine the possibilities for the transition functions for a rank n bundle over S^1 . Make a conjecture for $\text{Vect}_n(S^1)$.

The idea for the classification is to find a bundle, denoted $\pi: EG \to BG$ and called the universal bundle for B, such that for any other bundle $E \to B$ of rank n, there is a map $f: B \to BG$ such that $f^*(EG) \cong E$. By our earlier results, we already know that homotopic maps induced isomorphic bundles. Thus, if [B, BG] denotes the homotopy classes of maps from B to BG, then we have a well defined map,

$$[B, BG] \to \operatorname{Vect}_n(B)$$

 $[f] \mapsto [f^*(EG)]$

Our goal is to construct an inverse to this map. First, we have to say what EG and BG should be. We will assume throughout that B is compact, although the following will hold for when B is only paracompact.

Definition 1. A cover $\{U_{\alpha}\}$ of B is called a good cover if every non-empty intersection is diffeomorphic to \mathbb{R}^d , where d is the dimension of B. [Note: some texts call a cover good if every intersection is contractible.]

Note that for any bundle over B, we may take the elements of the good cover as our trivializing neighborhoods.

Proposition. For $\pi: E \to B$ a vector bundle there exist finite many sections, $\{s_1, \ldots, s_k\}$ such that for all $b \in B$, the set $\{s_1(b), \ldots, s_k(b)\}$ spans the fiber.

Proof: Consider first the local situation. Using the good cover, $\psi_i : E_{|U_i} \to U_i \times \mathbb{R}^n$, we claim that we have n local sections which generate E_b for all $b \in U_i$. If $\{e_1, \ldots, e_n\}$ is the standard basis, the local sections are (x, e_a) . Define $s_{i,a} = \psi_i^{-1}(b, e_a)$. This is a local frame over U_i . To patch together to get a global set of sections, taker a partition of unity, $\{\rho_i\}$ subordinate to $\{U_i\}$. Extend $s_{i,a}(b)$ to $\rho_i(b)s_{i,a}(b)$. Then

$$\bigcup_{i} \{\rho_{i}s_{i,a}\}_{a=1}^{n}$$

do the job. \square

Exercise 2. Check that the collection

$$\{\tilde{s}_i,\ldots,\tilde{s}_k\}=\bigcup_i\{\rho_is_{i,a}\}_{a=1}^n$$

globally generate the bundle E, i.e, $\{\tilde{s}_1(b), \ldots, \tilde{s}_k(b)\}$ spans E_b for all $b \in B$.

Now that we have our global sections, how do we use them? Assume that s_1, \ldots, s_k are the desired sections. Let $V = \mathbb{R}\langle s_1, \ldots, s_k \rangle$ be the real vector space on the set of sections. Fix $b \in B$ and define a map, $\operatorname{ev}_b : V \to E_b$ by evaluation, $s_i \mapsto s_i(b)$. Then, the following properties hold:

- (a) The map is surjective since the $s_i(b)$ span the fiber.
- (b) The kernel of ev_b is a codimension n subspace of V, so that $V/\ker(ev_b) \cong E_b$

To complete our search for the universal bundle, we need to digress into the realm of the Grassmanian, denoted by G(k, n), which is the set of all k-planes in \mathbb{R}^n . This is the subject of the next lecture.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E{\text{-}mail\ address:}$ bradlow@math.uiuc.edu