THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 12

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 18, 1998

We will need to be familiar with Grassmanians and bundles over them for our construction of the unviversal bundle.

Definition 1. The real *Grassmanian* is the set of all k-planes in \mathbb{R}^n and is denoted by $G_{\mathbb{R}}(k,n)$. Similarly, the complex *Grassmanian*, $G_{\mathbb{C}}(k,n)$ is the set of all complex k-planes in \mathbb{C}^n .

Example 1. G(1,n) is the set of all lines in \mathbb{R}^n . This should be familiar as real projective n-1 space, \mathbb{RP}^{n-1} . Similarly, $G_{\mathbb{C}}(1,n) = \mathbb{CP}^{n-1}$.

We need to establish the following key properties of the Grassmanian. We derive the properties for $G(k,n) = G_{\mathbb{R}}(k,n)$ but the same hold for $G_{\mathbb{C}}(k,n)$. These are:

- (a) G(k, n) is a smooth manifold of dimension k(n k).
- (b) Let γ_k^n be the subset of $G(k,n) \times \mathbb{R}^n$ consisting of $\{(V, \vec{v}) : \vec{v} \in V\}$. Then under the natural projection map, $\pi : \gamma_k^n \to G(k,n)$ is a bundle with fiber a k-plane.

Recall that the trivial bundle is denoted by \mathbb{R}^n . Then the universal quotient bundle, Q, over G(k, n) is defined by the exact sequence

$$0 \to \gamma_k^n \to \mathbb{R}^n \to Q \to 0$$

We have that $Q_{|V} \cong \mathbb{R}^n/V$, an n-k-plane.

We begin with the first property above. A useful was to specify a frame is by tge $n \times k$ matrix, $[\vec{v}_1, \ldots, \vec{v}_k]$ (where eacg \vec{v}_i is displayed as an $n \times 1$ column). The linear independence condition is equivalent to the condition that $[\vec{v}_1, \ldots, \vec{v}_k]$ has rank k. We can interpret this matrix as an injective linear map, $\mathbb{R}^k \to \mathbb{R}^n$.

Of course each k-plane admits may frames, so that the description is in no way unique. In fact, given any $A \in GL(k)$, we get a new frame described by the matrix, $[\vec{v}_1, \ldots, \vec{v}_k] \cdot A$, or equivalently, the map

$$\mathbb{R}^{k} \underline{A} \mathbb{R}^{k} \left[\underline{\vec{v}_1, \dots, \vec{v}_k} \right] \mathbb{R}^{n}$$

This leads to a description of G(k,n) as a quotient (by GL(k)) of the space of all k-frames. The latter is called the Stiefel manifold of k-frames and is denoted by F(k,n). We can identify

$$F(k,n) = \{n \times k \text{ matrices of rank} k \}$$
$$= \{f : \mathbb{R}^k \to \mathbb{R}^n : f \text{ is linear and injective} \}$$

Then, $G(k,n) = F(k,n)/\operatorname{GL}(n)$ where $\operatorname{GL}(k)$ acts on F(k,n) in the manner described above.

Exercise 1. Show that the GL(k) action on F(k,n) is a free right action.

Exercise 2. Show that F(k,n) is a smooth manifold of dimension kn.

Suppose that $[\vec{v}_1, \ldots, \vec{v}_k] \in G(k, n)$ has the property that the first k by k minor has non-zero determinant (since the matrix has rank k, at least one of the minors has non-zero determinant). Then, there is some $A \in GL(k)$ such that

$$[\vec{v}_1, \dots, \vec{v}_k] \cdot A = [\frac{\mathrm{Id}}{B}]$$

That is, the first k rows have been reduced to the identity, and B is an (n-k) by k block. We define a map,

$$\operatorname{Mat}(n-k,k) \to U_{1,\dots,k} \subset \operatorname{GL}(k,n)$$

by

$$B \mapsto \left[\frac{\operatorname{Id}}{B}\right]$$

Exercise 3. If $I = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, then U_I defines a coordinate patch for G(k, n). Show that G(k, n) is covered by the set of all such U_I and that the coordinate transformations are smooth.

Note that the story gets better. Over \mathbb{C}^n , the coordinate transformations for $G_{\mathbb{C}}(k,n)$ are holomorphic. Thus, $G_{\mathbb{C}}(k,n)$ is a complex manifold of dimension k(n-k).

We now move to the second property. We first look at the projection $\pi: F(k,n) \to G(k,n)$. This clearly has fiber GL(k). In fact, it is a GL(k) bundle. We need to establish the local triviality over U_I . Over $U_{\{1,\dots,k\}}$, describe

$$[\vec{v}_1, \dots, \vec{v}_k] = [\frac{\mathrm{Id}}{R}] \cdot A$$

Define a map $[\vec{v}_1, \dots \vec{v}_k] \mapsto ([\vec{v}_1, \dots, \vec{v}_k], A)$. This is the trivializing map. So, $\pi : F(k, n) \to G(k, n)$ is a principal GL(k)-bundle. How does this bundle relate to γ_k^n ?

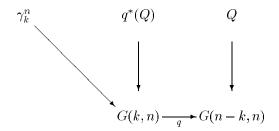
Claim.

$$\gamma_k^n = F(k, n) \times_{GL(k)} \mathbb{R}^k$$

Exercise 4. Establish this for the case where k=1, the tautological bundle over \mathbb{RP}^{n-1} .

Remark. Given a k-plane, $V^k \subseteq \mathbb{R}^n$, we obtain an n-k plane given by \mathbb{R}^n/V^k (if we have a metric, then we can identify this with V^{\perp} m the othogonal complement of V).

We thus get a map $q: G(k,n) \to G(n-k,n)$. We can use this map to pull back $Q \to G(n-k,n)$ to G(k,n). We then have the following diagram:



A natural question to ask is: how are γ_k^n and $q^*(Q)$ realted. It turns out that γ_k^n is the same as the dual bundle to $q^*(Q)$.

Exercise 5. Prove that $\gamma_k^n \cong (q^*(Q))^*$.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address\colon$ bradlow@math.uiuc.edu