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We will need to be familiar with Grassmanians and bundles over them for our construction of the
unviversal bundle.

Definition 1. The real Grassmanian is the set of all k—planes in R™ and is denoted by Gg(k, n). Similarly,
the complex Grassmanian, Gg(k,n) is the set of all complex k—planes in C”.

Example 1. G(1,n) is the set of all lines in R™. This should be familiar as real projective n — 1 space,

RIP*~L Similarly, Ge(1,n) = CP" L,

We need to establish the following key properties of the Grassmanian. We derive the properties for
G(k,n) = Gg(k,n) but the same hold for Gg(k, n). These are:

(a) G(k,n) is a smooth manifold of dimension k(n — k).

(b) Let 7 be the subset of G(k, n) x R™ consisting of {(V,?) : ¢ € V'}. Then under the natural projection
map, 7 : vy — G(k,n) is a bundle with fiber a k—plane.

Recall that the trivial bundle is denoted by R™. Then the universal quotient bundle, @, over G(k,n) is
defined by the exact sequence
We have that Qy = R"/V, an n — k-plane.

We begin with the first property above. A useful was to specify a frame is by tge n x k matrix, [7y, . .., ¥]
(where eacg ¥; is displayed as an n x 1 column). The linear independence condition is equivalent to the
condition that [#y,...,#;] has rank k. We can interpret this matrix as an injective linear map, R¥ — R”,

Of course each k—plane admits may frames, so that the description is in no way unique. In fact, given
any A € GL(k), we get a new frame described by the matrix, [0, ..., %3] - A, or equivalently, the map

]Rk A ]Rk [1717"'71776] R”

This leads to a description of G(k,n) as a quotient (by GL(k)) of the space of all k-frames. The latter is
called the Stiefel manifold of k—frames and is denoted by F(k,n). We can identify

F(k,n) = {n x k matrices of rankk}
={f:R¥ = R": fis linear and injective}

Typeset by ApS-TEX



Then, G(k,n) = F(k,n)/ GL(n) where GL(k) acts on F'(k,n) in the manner described above.

Fzercise 1. Show that the GL(k) action on F'(k,n) is a free right action.

Fzercise 2. Show that F'(k,n) is a smooth manifold of dimension kn.

Suppose that [¢, ..., U] € G(k, n) has the property that the first & by & minor has non-zero determinant
(since the matrix has rank k, at least one of the minors has non-zero determinant). Then, there is some
A € GL(k) such that
Id
3!
That is, the first & rows have been reduced to the identity, and B is an (n— k) by & block. We define a map,

Mat(n — k, k) — U1, x C GL(k, n)

[Ulaaak]A:[

by
Id

B»—>[B]

Frercise 3. It I = {é1,...,ixt C {1,...,n}, then Us defines a coordinate patch for G(k,n). Show that
G(k,n) is covered by the set of all such Ur and that the coordinate transformations are smooth.

Note that the story gets better. Over €, the coordinate transformations for Gi¢(k, n) are holomorphic.
Thus, Gg(k, n) is a complex manifold of dimension k(n — k).

We now move to the second property. We first look at the projection = : F/(k,n) — G(k,n). This clearly
has fiber GL(k). In fact, it is a GL(k) bundle. We need to establish the local triviality over Uy. Over
Ugi,. .k}, describe

S . Id

[V1,...,0k] = [B
Define a map [¢1,...%;] — ([¢1,...,9%],4). This is the trivializing map. So, 7 : F(k,n) — G(k,n) is a
principal GL(k)-bundle. How does this bundle relate to 477

)4

Claim.
7]? = F(k,n) XGL(k) ]Rk

Ezercise 4. Establish this for the case where k = 1. the tautological bundle over RI" 1.

Remark. Given a k—plane, V¥ C R", we obtain an n — k plane given by R"/V* (if we have a metric, then
we can identify this with V4m the othogonal complement of V).

We thus get a map ¢ : G(k,n) — G(n — k,n). We can use this map to pull back @ — G(n — k,n) to
G(k,n). We then have the following diagram:

Vi 7"(Q) Q

G(k,n) —q»G(n —k,n)



A natural question to ask is: how are 77 and ¢*(Q) realted. It turns out that 7} is the same as the dual

bundle to ¢*(Q).
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Ezercise 5. Prove that v}



