THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 16

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 27, 1998

Connections on Vector Bundles II

We now begin a detailed treatment of connections, starting with:

Definition 1. For a vector bundle $E \to B$, a connection is a map

$$D: \Omega^0(B, E) \to \Omega^0(B, T^*B \otimes E)$$

such that (i) D is linear and (ii) $D(fs) = df \otimes s + fDs$, for $f \in C^{\infty}(B, \mathbb{R})$ and $s \in \Omega^{0}(B, E)$.

Lemma. (ii) guarantees that D is a local operator, that is, Ds(b) depends only on s "near b".

Proof: Take a open neighborhood U of b and define a smooth bump function f on U such that $f \equiv 1$ on $V(\subset U)$ near b and $f \equiv 0$ outside U. Then $D(fs) = df \otimes s + fDs$ implies D(fs)(b) = Ds(b), but fs is zero outside U! \square

Hence local descriptions of D are possible, that is, we can use local frames to get a local description of D. Say $E|_U \xrightarrow{\simeq^{\Psi}} U \times \mathbb{R}$ is a local trivialization, with corresponding local frame $\{e_i\}_{i=1}^n$. Thus $e_i(b) = \Psi^{-1}(b, \hat{e_i})$, for $\hat{e_i}$ a standard basis element for \mathbb{R}^n . Then, over U, with respect to this section, s has a local description $s = \sum s_i e_i$ with $s_i : U \to \mathbb{R}$. Applying (i) and (ii) in Definition 1, we can thus write $Ds = \sum ds_i \otimes e_i + s_i(De_i)$.

Claim.

$$De_i = \sum_j A_{ji} \otimes e_j$$

where A_{ji} are 1-forms defined on U.

Proof: De_i is a (local) section of $T^*U \otimes E$ and every section of $T^*U \otimes E$ has the form $\sum_j A_{ji}e_j$. (Note. A_{ji} depend only on D and $\{e_i\}$, NOT on s!)

Then

$$Ds = \sum_{i,j} (ds_j + A_{ji}s_j) \otimes e_i.$$

If we identify $s = (s_1, \dots, s_n)^t$, we see that

$$D\begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = (d+A)\begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix},$$

where $A = [A_{ji}]$ is an $n \times n$ matrix of 1-forms on U. That is, D = d + A. \square

Note. If $E = B \times \mathbb{R}^n$, then only one patch is required, that is, we can pick $\{e_i\}$ to be a global frame. In this case, any matrix of 1-forms A will produce a connection D = d + A. In particular, $A \equiv 0$ yields D = d (The difference between D = d and D = d + A will be clear later).

If $E = \coprod U_{\alpha} \times \mathbb{R}^n/\{g_{\alpha\beta}\}$ is not trivial and $\{e_i^{\alpha}\}$ is a local frame on U_{α} , then we must investigate compatibility of local descriptions:

Suppose $D = d + A^{\alpha}$ over U_{α} and $D = d + A^{\beta}$ over U_{β} , then

$$De_i^{\alpha} = A_{ii}^{\alpha} e_i^{\alpha}.$$

Also $e_i^{\alpha} = g_{ii}^{\alpha\beta} e_i^{\beta}$, so

(2)
$$De_{i}^{\alpha} = D(g_{ji}^{\alpha\beta} e_{j}^{\beta})$$

$$= dg_{ji}^{\alpha\beta} \otimes e_{j}^{\beta} + g_{ji}^{\alpha\beta} De_{j}^{\beta}$$

$$= dg_{ji}^{\alpha\beta} g_{kj}^{\beta\alpha} \otimes e_{k}^{\alpha} + g_{ji}^{\alpha\beta} A_{kj}^{\beta} g_{lk}^{\beta\alpha} \otimes e_{l}^{\alpha}$$

$$= \left(\left[g^{\beta\alpha} \cdot dg^{\alpha\beta} \right]_{li} + \left[g^{\beta\alpha} A^{\beta} g^{\alpha\beta} \right]_{li} \right) \otimes e_{l}^{\alpha}.$$

Therefore the compatibility implies (1)=(2). Hence

$$A^{\alpha} = g^{\beta\alpha} A^{\beta} g^{\alpha\beta} + g^{\beta\alpha} \cdot dg^{\alpha\beta}.$$

<u>Conclusion</u>: D is specified by $\{A^{\alpha}\}$, where A^{α} is a matrix value 1-form on U_{α} and A^{α} and A^{β} related by (*) on $U_{\alpha} \cap U_{\beta}$.

Note. We cannot take $A^{\alpha} \equiv 0$, because this does not in general satisfy (*).

Exception: If $dg^{\beta\alpha} = 0$, that is, $g^{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to GL(n)$ is (local) constant. For reason which will become clear, such bundles are called **flat bundles**:

Definition 2. If E admits description $E = \coprod U_{\alpha} \times \mathbb{R}^n / \{g_{\alpha\beta}\}$ such that $dg^{\alpha\beta} = 0$, then E is called flat.

If E is a flat bundle, we can define a connection D=d with respect to corresponding flat local frames.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address:}$ bradlow@math.uiuc.edu