THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 17

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

March 2, 1998

Existence of Connections

Say that a bundle is described by

$$E = (\prod U_{\alpha} \times \mathbb{R}^n) / \{g_{\alpha\beta}\}$$

Here are two ways to construct a connection on E. Both methods use connections, D_{α} defined on $E|U_{\alpha}$, the local trivializations $\psi_{\alpha}: E|U_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$ and a partition of unity, $\{\rho_{\alpha}\}$ subordinate to the cover $\{U_{\alpha}\}$. The two connections are defined by

- (a) $D_1 = \sum_{\alpha} D_{\alpha} \circ \rho_{\alpha}$ (b) $D_2 = \sum_{\alpha} \rho_{\alpha} D_{\alpha}$

Note. D_{α} was defined on $E|U_{\alpha}$ by:

- (a) Picking a connection, D̃_α on U_α × ℝⁿ.
 (b) Setting D_α = ψ_α⁻¹ ∘ D̃_α ∘ ψ_α, i.e, D_α(s) = ψ_α⁻¹(D̃_α(ψ_α(s)))

Exercise 1. Show that this is a connection.

In fact, given a bundle isomorphism, $h: E \to F$ and a connection D on F, we define a connection, h^*D , on E by $h^*D = h^{-1} \circ D \circ h$.

In the definition of D_2 , the terms in the sum are of the form

$$(\rho_{\alpha}D_{\alpha}(s))(b) = \rho_{\alpha}(b)D_{\alpha}(s)(b) = \begin{cases} \rho_{\alpha}(b)D|\alpha(s)(b) & b \in U_{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

Exercise 2. Check that D_2 does define a connection.

We now examine the connection, D_1 . We define

$$(D_{\alpha} \circ \rho_{\alpha})(s) = D_{\alpha}(\rho \cdot \alpha(s))$$

= $d\rho_{\alpha} \otimes s + \rho_{\alpha} D_{\alpha}(s)$

Using this, we see that

$$D_1(s) = D_2(s) + \sum_{\alpha} d\rho_{\alpha} \otimes s$$

[Note that off of U_{α} , $d\rho_{\alpha} = 0$ since the support of ρ_{α} is in U_{α} .]

Exercise 3. Show that D_1 defines a connection.

The diffrerence between D_1 and D_2 is instructive.

Note. $D_1 - D_2$ is a End(E) valued 1-form. In fact

$$(D_1-D_2)=\sum_{\alpha}d\rho_{\alpha}\otimes \mathrm{Id}$$
 i.e, for any $s\in\Omega^0(E)$ $(\sum_{\alpha}d\rho_{\alpha}\otimes \mathrm{Id})(s)=\sum_{\alpha}d\rho_{\alpha}\otimes s$

This illustrates a general fact.

Proposition. If D_1 and D_2 are connections on a vector bundle, $\pi: E \to B$, then

$$D_1 - D_2 \in \Omega^0(B, T^*B \otimes End(E))$$

= $\Omega^1(B, End(E))$

Proof: We check:

- (a) This is linear with respect to constants.
- (b) This is also linear with repsect to functions:

$$(D_1 - D_2)(fs) = (df \otimes s + fD_1(s)) - (df \otimes s + fD_2(s))$$

= $f(D_1 - D_2)(s)$

Note. With respect to local frames of E, say $\{e_i^{\alpha}\}_i^{\text{rank E}}$, locally a section of $T^*M \otimes \text{End}(E)$ is a matrix of 1-forms, A^{α} . Over U_{α} , A^{α} and A^{β} must be related by the transition functions,

$$A^{\alpha} = g_{\alpha\beta}A^{\beta}g_{\beta\alpha}$$

If $(D_1 - D_2)(fs) = f(D_1 - D_2)(s)$, then the local descriptions (with respect to local frames) will also have this property.

Exercise 4. Repeat the computation in the proof of (b) for connection 1-forms.

Summary: $D_1 - D_2 \in \Omega^1(B, \operatorname{End}(E))$. Conversely, if $A \in \Omega^1(B, \operatorname{End}(E))$, then we can define $(D_1 + A)(s) = D_1(s) + A(s)$.

Exercise 5. Show that $D_1 + A$ is a connection.

Conclusion: If $\mathcal{A}(E)$ is the space of all connections on E, then $\mathcal{A}(E) = D_0 + \Omega^1(B, \operatorname{End}(E))$ where D_0 is any fixed connection. That is, $\mathcal{A}(E)$ is an infinite dimensional affinve space based on $\Omega^1(E, \operatorname{End}(E))$.

Parallel Transport

Definition 1. Given a connection, D, and a vector field, X, then $D_X s$ is called the *covariant derivative* of s along X. We can write it locally: $D_X s = d_X s + (A(X))s$, where $D_X s \in \Omega^0(B, E)$ and $(D_X s)(b) = (d_{X_b} s) + A(X_b)s(b)$, that is, it depends only on $X_b \in T_b B$.

Definition 2. If $s \in \Omega^0(B, E)$ satisfies Ds = 0, then we say that s is parallel.

Question. Can we find solutions to Ds = 0?

With respect to a local frame, if

$$s = \begin{pmatrix} s_1 \\ s_2 \\ \dots \\ s_n \end{pmatrix}$$

and $D = d + A_1$, then the condition for being parallel is $ds_i + A_{ij}s_j = 0$ for all i. With local coordinates, (x_1, \ldots, x_k) , on B, we are thus looking at trying to solve the system of equations,

$$\sum_{\alpha=1}^{k} \frac{\partial s_i}{\partial x_{\alpha}} + (A_{ij}^{\alpha} s_j) dx_{\alpha} = 0 \quad i = 1, \dots, n$$

where $A_{ij} = A_{ij}^{\alpha} dx_{\alpha}$. This is a system of partial differential equations for which existence of solutions is NOT guarenteed.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address:}$ bradlow@math.uiuc.edu