THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 19

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

March 6, 1998

Recall from last time that given a parallel section, $s \in \Omega^0(B, E)$, we have that

- (i) s(B) is a submanifold of E (actually true for any section).
- (ii) $T_{s(b)}(s(B)) = s_*(T_bB) = H_{s(b)} \subset T_{s(b)}E$. Given a parallel frame, $\{s_1, \ldots, s_k\}$, where k is the rank of the bundle, we get such a submanifold through every point. Call s(B) an integrable submanifold for $H_{(s(b))}$.

Conclusion: If we have parallel frames, then the horizontal distribution,

$$\bigcup_{e \in E} H_e = H \subset TE$$

is integrable.

Remark. Conversely, if H is integrable, then there exists an integrable submanifold through every point. This implies that if $\{e_i(b)\}$ is a basis for E_b , then we can extend this to a local parallel frame.

Exercise 1. Supply the details to prove this remark.

Obstructions to Integrability

[The following material relies upon *Frobenius's* Theorem. For a complete discussion of this, see *Warner's* book.] Suppose that we have a distribution, $\mathcal{D} \subset TM$, with the dimension of $\mathcal{D}_x = d$ for all x, e.g, $\mathcal{D}_x \subseteq T_xM$ is a dimension d subspace. When is \mathcal{D} an integrable distribution?

By Frobenius' Theorem, a condition for being integrable is that for any $X, Y \in \mathcal{D}$, the Lie bracket of X and Y, [X,Y], is also in \mathcal{D} . Recall that the Lie bracket is defined by

$$[X,Y](f) = X(Y(f)) - Y(X(f))$$

We call \mathcal{D} involutive if this applies.

There is (for our purposes) a more convenient version of this condition, given in terms of differential forms. Consider the ideal in \wedge^*T^*M which annihilates \mathcal{D} : Set

$$I_{\mathcal{D}} = \{ \alpha \in \wedge^1 T^* M : \alpha(X) = 0 \text{ for all } X \in \mathcal{D} \}$$

and

$$\mathcal{I}_{\mathcal{D}} = \{ \beta \land \alpha : \alpha \in I_{\mathcal{D}} \}$$

Example 1. Suppose $M = \mathbb{R}^n$ and

$$\mathcal{D}_x = \mathbb{R}\left\{\frac{\partial}{\partial x_1}\right\} \subseteq T_x M$$

Then $\mathcal{I}_{\mathcal{D}}$ is generated by $\{dx_1, \ldots, dx_n\}$.

The condition on $\mathcal{I}_{\mathcal{D}}$ corresponding to \mathcal{D} being involutive is $d\mathcal{I}_{\mathcal{D}} \subseteq \mathcal{I}_{\mathcal{D}}$. That is, $\mathcal{I}_{\mathcal{D}}$ is a differential ideal.

In fact, Frobenius' Theorem says that the following are equivalent

- (a) $d\mathcal{I}_{\mathcal{D}} \subseteq \mathcal{I}_{\mathcal{D}}$
- (b) \mathcal{D} is involuted
- (c) For any $x \in M$, there exists an integrable submanifold passing through x, e.g if $i: S \to M$, then $i_*(T_sS) = \mathcal{D}_x$. This is illustrated in figure 19.1

Figure 19.1

In order to apply this to $H \subset TE$, we need to calculate \mathcal{I}_H .

Claim. \mathcal{I}_H is generated by $dy_i + A_{ij}y_j$.

Explaination: Pick a local frame, $\{e_i\}$ and with respect to this local frame, the connection is D = d + A, as before. Pick local coordinates (x_1, \ldots, x_n) on B and on fibers (y_1, \ldots, y_k) . Define a map $\mathbb{R}^n \times \mathbb{R}^k \to E$ by

$$(x_1,\ldots,x_n,y_1,\ldots,y_k)\mapsto \sum y_ie_i(x_i)$$

Exercise 2. Show that $(dy_1 + A_{ij}y_i)_e(X_h) = 0$ for all $X_h \in H_e$. Hint: $X_h \sim [\tilde{\gamma}_h(t)]$ where $\tilde{\gamma}_h(t)$ is a particular horizontal lift.

Question: How should we interpret $d\mathcal{I}_H \subseteq \mathcal{I}_H$? Examine

$$d(dy_i + A_{ij}y_j) = d(A_{ij}y_j) = (dA_{ij})y_j - A_{ij} \wedge dy_j$$

Is this in \mathcal{I}_H ? Write $dy_j = (dy_j + A_{jk}y_k) - A_{jk}y_k$.

Exercise 3. Show that $d(dy_i + A_{ij}y_j) = (dA + A \wedge A)y_j$ +something in \mathcal{I}_H .

Conclusion: If $dA + A \wedge A$ vanishes, then $d\mathcal{I}_H \subseteq \mathcal{I}_H$ and so the horizontal distribution will be integrable.

Definition 1. Denote this form by $F_A = dA + A \wedge A$.

Observe that F_A is a matrix of two forms.

Claim. If $\{A^{\alpha}\}$ are connection 1-forms with respect to a local trivialization, $\{U_{\alpha}\}$ and $F_{\alpha} = dA^{\alpha} + A^{\alpha} \wedge A^{\alpha}$, then $\{F_{\alpha}\}$ defines a global section of $\wedge^2 T^*B \otimes End(E)$.

To establish the claim, suppose that $\{e_i^{\alpha}\}$ is a local frame over U_{α} and the transition functions are $\{g^{\beta\alpha}\}$. We need the following diagram to commute:

$$\begin{array}{c|c}
\mathbb{R}^k & \xrightarrow{F_{\alpha}} \mathbb{R}^k \\
g^{\beta\alpha} & & & & \\
\mathbb{R}^k & \xrightarrow{F_{\beta}} \mathbb{R}^k
\end{array}$$

That is, for $F_{\alpha} = g^{\alpha\beta} \circ F_{\beta} \circ g^{\beta\alpha}$.

Exercise 4. Prove this! Hint: Use the transformation law for A^{α} , e.g.,

$$A^{\alpha} = q^{\alpha\beta} A^{\beta} q^{\beta\alpha} + q^{\alpha\beta} dq^{\beta\alpha}.$$

Compute dA^{α} and $A^{\alpha} \wedge A^{\alpha}$. [Use the fact that $g^{\alpha\beta}g^{\beta\alpha} = 1$ and so $dg^{\alpha\beta}g^{\beta\alpha} + g^{\alpha\beta}dg^{\beta\alpha} = 0$.]

Definition 2. $F_D = \{F_\alpha\}$ is called the curvature of D.

An alternative description of the curvature of a connection can be made by $F_D = D^2$. However, we need to make sense of D^2 , now. That is, we need to define $D: \Omega^p(B, E) \to \Omega^{p+1}(B, E)$.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E{\text{-}mail\ address:}$ bradlow@math.uiuc.edu