THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 2

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

January 23, 1998

In the previous lecture, we gave various bundles without a formal definition.

Definition 1. A bundle is a quadruple, (E, B, F, π) , where E, B, F are spaces and $\pi : E \to B$ is a continuous map, called the projection, such that for every $x \in B$ we have that $\pi^{-1}(x) \cong F$ and for every $b \in B$ there is an open neighborhood $U \subseteq B$ of b such that $\pi^{-1}(U) \cong U \times F$ in a fiber preserving way. E is called the total space, B the base spaces, and F the fiber.

While the definition of a bundle is a very general one, we will be applying the definition of a bundle to several specialized categories.

- (a) Smooth: E, B, F are smooth manifolds, maps are smooth.
- (b) **TopM**: E, B, F are manifolds, maps are continous maps.
- (c) Holomorphic: E, B, F are smooth complex manifolds, maps are holomorphic.

Suppose that (E, B, F, π) is a bundle. We identify two special cases by placing restrictions on F and π .

Definition 2. If F is a linear vector space (eg \mathbb{R}^n , \mathbb{C}^n) and the identifications $\pi^{-1}(U) \cong U \times F$ are linear maps, then we call (E, B, F, π) a vector bundle.

The tangent, normal, and tautological bundles are all vector bundles (cf. Lecture 1).

Definition 3. If F is a Lie group which has a smooth right action of E such that

- (a) The action is free (i.e, $e \cdot g = e$ if and only if g is the identity element)
- (b) The action preserves the fibers of $E \to B$.

We then call (E, B, F, π) a principal F-bundle.

The Hopf bundle is an example of a principal S^1 bundle and the homogeneous bundle $O(n) \to O(n)/O(n-1)$ is a principal O(n-1) bundle.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address:}$ bradlow@math.uiuc.edu