THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 22

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

March 13, 1998

Induced Connections II

(3)<u>Induced Connections on E^* :</u>

Given a connection D on $E \to B$, we can define a connection D^* on E^* such that if $s^* \in \Omega^0(E^*)$ and $t \in \Omega^0(E)$, then $[s^*(t)]_b = s_b^*(t_b), \forall b \in B$, is a smooth funtion on the base B. So we can take the differential

$$ds^*(t) = (D^*s^*)(t) + s^*(D(t)).$$

With respect to the local frame $\{e_i\}$ for E, D = d + A and with respect to the dual frame $\{e_i^*\}$ for E^* , $D^* = d + A^*$. Then we have

$$e_i^*(b)(e_i(b)) = \delta_{ij}$$
,

such that (i) $de_i^*(e_j) = 0$, (ii) $De_i = A_{ji}e_k$, and (iii) $D^*e_i^* = A_{kj}^*e_k^*$. So we need

$$0 = de_i^*(e_j)$$

= $(A_{ki}^* \otimes e_k^*)(e_j) + e_i^* \otimes (A_{kj}e_k)$
= $A_{ji}^* + A_{ij}$.

Therefore we require

$$A^* = -A^t$$
.

Exercise 1. Check that if $\{A^{\alpha}\}$ is a collection of connection 1-forms for D, then $\{-(A^{\alpha})^t\}$ defines a connection on E^* ! (If so, then the connection clearly is the one we need!).

Exercise 2. Describe this in terms of horizontal lifting of curves.

Note. We can combine (2) and (3) to get D on $(\bigotimes^r E_1) \otimes (\bigotimes^s E_2)$ etc.

Remark. From (1), (2), and (3), we can obtain the connection on $E_1 \otimes E_2^* \cong \text{Hom}(E_2, E_1)$.

(4)<u>Connections on Hom</u> $(E_1, E_2) \cong E_2 \otimes E_1^*$: Since Hom $(E_1, E_2) \cong E_2 \otimes E_1^*$, so we have the connection

$$D = D_2 \otimes I_1 + I_2 \otimes D_1^*$$

defined on $\text{Hom}(E_1, E_2)$.

Direct description on $\text{Hom}(E_1, E_2)$: Given $h: E_1 \to E_2$ and fix bases $\{e_i^{(1)}\}$ and $\{e_i^{(2)}\}$ for E_1 and E_2 , respectively. Then $h = [h_{ij}]$.

Question. What is the D(h)?

Let $e_{ij} = e_i^{(2)} \otimes e_i^{(1)^*}$. Then

$$D(e_{ij}) = A_{ki}^{(2)} e_k^{(2)} \otimes e_j^{(1)^*} + e_i^{(1)} \otimes A_{kj}^{(1)^*} e_k^{(1)^*}$$
$$= A_{ki}^{(2)} e_k^{(2)} \otimes e_j^{(1)^*} - A_{jk}^{(1)} e_i^{(2)} \otimes e_k^{(1)^*}.$$

But $h = \sum_{i=1}^{n} h_{ij} (e_i^{(2)} \otimes e_j^{(1)^*})$, where we think of $\{e_{ij}\}$ as a basis for $\text{Hom}(E_1, E_2)$ via $(e_i^{(2)} \otimes e_j^{(1)^*})(s) = e_j^{(1)^*}(s)e_i^{(1)}$.

Exercise 3. Show that

$$D(h) = \sum (dh + A^{(2)}h - hA^{(1)})_{ij} e_i^{(2)} \otimes e_j^{(1)^*}.$$

I.e. if $h = [h_{ij}]$ with respect to $\{e_{ij}\}$, then

$$D(h) = dh + A^{(2)}h - hA^{(1)}.$$

Remark. Special case: if $E_1 = E_2 = E$, then $\operatorname{Hom}(E_1, E_2) = \operatorname{End}(E)$ and D on E induces D on $\operatorname{End}(E)$ such that with respect to local frames, if D = d + A on E and $u \in \Omega^0(\operatorname{End}(E))$, then

$$D(u) = du + Au - uA$$
$$= du + [A, u]$$

on End(E).

Note. We can use the extension of D on End(E) to define the Covariant Derivative

$$D: \Omega^p(\operatorname{End}(E)) \to \Omega^{p+1}(\operatorname{End}(E))$$

Apply this covariant derivative to $F_D \in \Omega^2(\text{End}(E))$ to compute $D(F_D)$. With respect to local frames, $D(F_A) = dF_A + [A, F_A]$, where D = d + A. Thus the Bianchi identity says $D(F_D) = 0$!

(5) Connections on Pull-Back Bundles:

Connection on $f^*(E)$ via

Say D is a connection on E and $\{e_i^{\alpha}\}$ is local frames for E over U_{α} . Let $\{f^*(e_i^{\alpha})\}$ be the "pull-back" frame for $f^*(E)$ over $f^{-1}(U_{\alpha})$ with $f^*(e_i^{\alpha})(x) = e_i^{\alpha}(f(x))$. Say $D = d + A^{\alpha}$ with respect to $\{e_i^{\alpha}\}$.

Claim. $f^*(A^{\alpha})$ defines connection 1-form on $f^{-1}(U_{\alpha})$. (w.r.t. $\{f^*(e_i^{\alpha})\}$).

proof: Given a vector field Y on $f^{-1}(U_{\alpha})(\in X)$, $f^*(A_x^{\alpha})(Y) = A_{f(x)}^{\alpha}(f_*Y)$. That is, we define $f^*(D)$ on $f^*(E)$ such that

$$f^*(D_Y)(f^*s) = D_{f \circ Y}(s).$$

Note. Given an isomorphic bundle map (h is an isomorphism between two bundles)

Let D be a connection on F. Then we can define $h^*(D)$ on E by $h^*(D)(s) = h^{-1}(D)(h(s))$. Therefore

$$h^*(D) = h^{-1} \circ D \circ h$$
.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 E-mail address: bradlow@math.uiuc.edu