THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 28

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

April 6, 1998

Recall that given a vector bundle $E \to B$, we define characteristic classes in $H^*(B; \mathbb{F})$ ($\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) by starting with a GL_n invariant polynomial, $P: \mathrm{Mat}_n \to \mathbb{F}$, and a connection, $D: \Omega^0(E) \to \Omega^1(E)$, and then defining P(D) = P(F) where F is the curvature of the connection. We evaluate P(F) on the local expression for the curvature of D. Last time we proved that dP(F) = 0 and so [P(D)] represents a cohomology class in $H^*(B; \mathbb{F})$. Infact, if the degree of P is m, then $[P(D)] \in H^{2m}(B; \mathbb{F})$. What remains to be shown is that [P(D)] is independent of the connection D.

Suppose that D_0, D_1 are connections. Define the path in the space of connections from D_0 to D_1 by $D_t = tD_1 + (1-t)D_0$. Then,

$$P(D_1) - P(D_0) = \int_0^1 \frac{d}{dt} P(F_t, \dots, F_t) dt$$

where $P(A_1, \ldots, A_m)$ is the polarization of P. [E.g., for $P(A) = \text{Tr}A^2$, $P(A_1, A_2) = \frac{1}{2}\text{Tr}(A_1A_2 + A_2A_1)$].

Claim.

$$\int_0^1 \frac{d}{dt} P(F_t, \dots, F_t) \ dt = d(TP(D_0, D_1))$$

where

$$TP(D_0, D_1) = m \int_0^1 P(\theta, F_t, \dots, F_t) dt$$

and $\theta = D_1 - D_0$.

Note. $\theta \in \Omega^1(\text{End}(E))$. Thus, we can evaluate $P(\theta, F_t, \dots, F_t)$ by fixing a local frame and using a local expression for θ, F_t . By the invariance of P and the transformation properties of a section of End(E), $P(\theta, F_t, \dots, F_t)$ is independent of the local frame.

Suppose that with respect to a local frame

$$D_0 = d + A_0$$

$$D_1 = d + A_1$$

$$\theta = A_1 - A_0$$

Then $D_t = d + A_0 + t\theta = D + A_t$ where

$$A_t = A_0 + t\theta \quad (1)$$

Thus,

$$F_t = dA_t + A_t \wedge A_t \quad (2)$$

and

$$\dot{F}_t = d\dot{A}_t + \dot{A}_t \wedge A_t + A_t \wedge \dot{A}_t \quad (3)$$

We need

$$\frac{d}{dt}P(F_t,\ldots,F_t)=mP(\dot{F}_t,F_t,\ldots,F_t)$$

Exercise 1. IF $P: \operatorname{Mat}_n \times \ldots \operatorname{Mat}_n \to \mathbb{C}$ is multilinear, then

$$\frac{d}{dt}P(A_1(t),\ldots,A_m(t)) = \sum_{i=1}^m P(A_1(t),\ldots,\dot{A}_i(t),\ldots,A_m(t))$$

To evaluate $P(\dot{F}_t, F_t, \dots, F_t)$ at (t_0, x_0) , we pick a local frame such that $A_{t_0}(x_0) = 0$. (Recall by the Bianchi identity that we also get $(dF_{t_0})(x_0) = 0$.) Thus, at x_0 we get

$$\dot{F}_{t_0} = d\dot{A}_{t_0}$$
 by (3)
= $d\theta$ by (1)

Hence,

$$\int_0^1 \frac{d}{dt} P(F_t, \dots, F_t) dt = m \int_0^1 P(d\theta, F_t, \dots, F_t) dt$$

Also, (remembering that P is a multilinear map),

$$d(P(\theta, F_{t_0}, \dots, F_{t_0})) = P(d\theta, F_{t_0}, \dots, F_{t_0}) + (m-1)P(\theta, dF_{t_0}, \dots, F_{t_0})$$

Evaluating this in the special frame described above, we see that

$$d(P(\theta, F_{t_0}, \dots, F_{t_0})) = P(d\theta, F_{t_0}, \dots, F_{t_0})$$

Hence,

$$\int_0^1 \frac{d}{dt} P(F_t, \dots, F_t) dt = d(m \int_0^1 P(\theta, F_t, \dots, F_t) dt)$$

Example. Let $P_1(A) = \text{Tr}(A)$. Then

$$P(D_1) - P(D_0) = d \int_0^1 (\operatorname{Tr}(\theta) dt = d \operatorname{Tr}(\theta))$$

Suppose $P_2(A) = \text{Tr}(A^2)$. Then

$$TP_2(D_0, D_1) = d \int_0^1 \text{Tr}(\theta F_t + F_t \theta) dt = 2d \int_0^1 \text{Tr}(\theta F_t) dt$$

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 E-mail address: bradlow@math.uiuc.edu