THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 3

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

January 26, 1998

Recall that a bundle is a quadruple, (E, B, F, π) , where E, B, F are topological spaces, $\pi : E \to B$ is a continuous map satisfying $\pi^{-1}(x) \cong F$ for all $x \in B$ and there exists an open set $U \subseteq B$ with $x \in U$ such that $\pi^{-1}(U) \cong U \times F$ in a fiber preserving way. In the future, the bundle will just get denoted, $\pi : E \to B$. If we are in the **Smooth** category, π will be a smooth map.

Definition 1. For $\pi: E \to B$ a bundle, we say that a map $s: B \to E$ is a section if $\pi \circ s = \mathrm{Id}_B$. That is, s(b) is in the fiber of s over B.

A special case of a section is given by the trivial bundle,

If s is a section, then $s(b) = (b, \sigma(b))$, where $\sigma : B \to F$. Conversely, if $\sigma : B \to F$, then the map $s : B \to B \times F$ given by $s(b) = (b, \sigma(b))$ is a section. That is, there is a 1-1 correspondence between sections of the bundle and Map(B, F).

When E is not the trivial bundle, it will help to think of sections as a sort of twisted map from B to F. Write $E_{|U}$ for $\pi^{-1}(U)$. If $\psi: E_{|U} \to U \times F$ is an identification, then we get the following diagram

Using the local trivialization, the local description of the section is a map $U \to F$.

Question: Do sections always exist?

Answer:

- (a) For smooth vector bundles the answer is yes. (C^{∞} sections).
- (b) For holomorphic bundles the answer is no.
- (c) For principal bundles the answer is no.

We have defined the objects which we want to study, and now we defined the maps between them.

Definition 2. If $\pi: E \to B$ and $\pi': E' \to B'$ are two bundles, a bundle map (or map of bundles) is a pair of maps, (u, f) such that the diagram commutes:

The definition says that $E_{|b|} \mapsto E'_{|f(b)}$ under u. If E = E' and B = B', then (u, f) is called a bundle endomorphism. If the maps are invertible, then (u, f) is a bundle automorphism. Observe that if we are considering vector bundles, then on the fibers the maps must be linear. If we are considering principal G-bundles, then we require the map on the fibers to group homomorphism and be G equivariant. That is, $f(p \cdot g) = f(p) \cdot g$.

Note the special case of a bundle endomorphism where $f = Id_B$. Then, we have that the following diagram commutes:

So, u just transforms points in each fiber. For the case of a vector bundle, on each fiber u is a vector space isomorphism.

Local Picture for Bundles

Suppose that $\pi: E \to B$ is a smooth vector bundle with $\pi^{-1}(b) \cong \mathbb{R}^n$. For each $b \in B$, take a neighborhood, say U_b , over which E can be trivialized. The collection $\{U_b\}_{b\in B}$ then covers B. Let $\psi_b: E_{|U_b} \to U_b \times \mathbb{R}^n$ be the trivialization. Suppose that $b \in U_\alpha \cap U_\beta$. A natural question to ask is how ψ_α and ψ_β compare. We have the following diagram:

$$E|U_{\alpha} \cap U_{\beta}$$

$$\psi_{\beta} \qquad \psi_{\alpha} \qquad \psi_$$

Where $g_{\beta\alpha} = \psi_{\beta} \circ \psi_{\alpha}^{-1}$. Observe that $g_{\beta\alpha}$, being the composite of linear maps, is itself a linear map. Since ψ_{α} and ψ_{β} are invertible, so is $g_{\beta\alpha}$. That is we may regard $g_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R})$. We get one of these for every pair, $U_{\alpha} \cap U_{\beta} \neq \emptyset$.

So, given a smooth vector bundle, we obtain a cover $\{U_{\alpha}\}$ of B by locally trivial neighborhoods and a set of transition functions,

$$\{g_{\beta\alpha}\}_{U_{\alpha}\cap U_{\beta}\neq\emptyset}$$

Question: When are the cover and the transition functions equivalent to the information contained in the bundle? That is, when does $\{U_{\alpha}\}$ and $\{g_{\beta\alpha}\}$ describe a bundle?

One observation can be made right away. If the cover and the transition functions do determine a cover, then we must have $g_{\alpha\alpha} = \text{Id}$, the inverse of $g_{\beta\alpha}$ is $g_{\alpha\beta}$, and if $U_{\alpha} \cap U_b eta \cap U_{\gamma} \neq \emptyset$, $g_{\alpha\beta} \circ g_{\beta\gamma} \circ g_{\gamma\alpha} = \text{Id}$ This last condition is known as the cocycle condition.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 E-mail address: bradlow@math.uiuc.edu