THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 31

PROFESSOR STEVEN BRADLOW CLASS NOTES FROM MATH 433

University of Illinois at Urbana-Champaign

April 15, 1998

Characteristic Classes for Complex Bundles III

We saw last time: for complex bundles $E_i \rightarrow B$, i = 1, 2,

$$c(E_1 \oplus E_2) = c(E_1) \cdot c(E_2)$$
$$ch(E_1 \oplus E_2) = ch(E_1) + ch(E_2)$$

where $c(E) = \left[\det(I + \frac{i}{2\pi}F) \right]$ (F is a curvature of any connection) and $ch(E) = \left[\operatorname{Tr}(\exp(\frac{i}{2\pi}F)) \right]$

Chern Classes for Dual Bundles

Say E^* = dual bundle to E. Recall: given a connection D on E, we can define a connection D^* on E^* such that $A^* = -A^t$. Thus

$$F^* = dA^* + A^* \wedge A^*$$
$$= -dA^t + A^t \wedge A^t.$$

But $A^t \wedge A^t = -(A \wedge A)^t$, if A is a matrix of 1 forms. So the curvature $F^* = -F^t$. Then

$$c(E^*) = \det(I - \frac{i}{2\pi}F)^t$$

$$= \det(I - \frac{i}{2\pi}F)$$

$$= \sum_k c_k(E^*)$$

$$= \sum_k c_k(-\frac{i}{2\pi}F)$$

$$= \sum_k (-1)^k c_k(\frac{i}{2\pi}F).$$

So

$$c_k(E^*) = (-1)^k c_k(E).$$

For example, $c_1(E^*) = -c_1(E)$, etc.

Relations between Chern Classes c_k and Chern Characters ch_k

We know $ch_k(A) = Tr(A^k)$, so

$$ch_0(E) = \operatorname{Tr}(\frac{i}{2\pi}F)^0 = \operatorname{Tr} I = \operatorname{Rank} E$$

$$ch_1(E) = \operatorname{Tr}(\frac{i}{2\pi}F)^1 = c_1(E)$$

$$ch_2(E) = \operatorname{Tr}(\frac{i}{2\pi}F)^2$$
:

If the eigenvalues of $\frac{i}{2\pi}F$ are x_1, \dots, x_n , then

$$ch_2(E) = \frac{1}{2} \sum_{i=1}^n x_i^2$$

$$= \frac{1}{2} \left(\sum_{i=1}^n x_i \right)^2 - \left(\sum_{i < j} x_i x_j \right)$$

$$= \frac{1}{2} c_1(E)^2 - c_2(E)$$

Thus

$$ch_2(E) = \frac{1}{2}c_1(E)^2 - c_2(E)$$

etc.

Chern Characters as a Map between Bundles and Cohomology

Property. $ch(E_1 \otimes E_2) = ch(E_1) \cdot ch(E_2)$.

Hint: Given connections D_i on E_i , i=1,2, we can define $D=D_1\otimes I_2+I_1\otimes D_2$ with $F_d=F_1\otimes I_2+I_1\otimes F_2$ on $E_1\otimes E_2$. Then use $\text{Tr}(A\otimes B)=\text{Tr}\,A\cdot\text{Tr}\,B$. \square

Exercise 1. Prove the above claim.

Remark. Given B, if we define $Vect(B) := \{Isomorphism classes of complex bundle on <math>B\}$, then we have two "ring operations" on Vect(B):

$$+ : E_1 \oplus E_2$$

 $\cdot : E_1 \otimes E_2$.

Vect(B) can be made into a ring under these operations (cf. a course on K-theory!) in which case

$$ch: \operatorname{Vect}(B) \to H^*(B, \mathbb{R})$$

defines a ring isomorphism.

Note. For a complex line bundle $L \to B$, we only have

$$c_0(L) = 1$$

$$c_1(L) \in H^2(B, \mathbb{R}).$$

(will see later how to compute in the case of L over complex manifold!)

So the total Chern class

$$c(L) = (1 + c_1(L)).$$

For $E = L_1 \oplus L_2 \oplus \cdots \oplus L_n$ (sum of n line bundles), we can get

$$c(E) = c(L_1)c(L_2)\cdots c(L_n)$$
$$= \prod_{i=1}^{n} (1 + c_1(L_i))$$

For example,

$$c_1(E) = \sum_{i=1}^n c_1(L_1)$$

$$c_2(E) = \sum_{i \neq j} c_1(L_i)c_1(L_j)$$

$$\vdots$$

$$c_n(E) = \prod_{i=1}^n c_1(L_i)$$

Exercise 2. Suppose $E = L_1 \oplus L_2 \oplus \cdots \oplus L_n$. If $c_1(L_i) = 0$, for some i, then $c_n(E) = 0$

Exercise 3. Suppose $E = L_1 \oplus L_2 \oplus \cdots \oplus L_n$. If $c_1(L_1) = c_1(L_2) = \cdots = c_1(L_k) = 0$, then $c_j(E) = 0$, for j > n - k.

Characteristic Classes for Real Bundles I

We want to define the *characteristic classes* for real bundles, say $E_{\mathbb{R}} \to B$ of rank n $(E_{\mathbb{R}}|_b \cong \mathbb{R}^n)$.

<u>First Approach</u>: Complexify $E_{\mathbb{R}}$ and use the previous discussions about complex bundles.

Let's recall some facts. We complexify a real vector space $V_{\mathbb{R}}$ by taking $V_{\mathbb{R}} \otimes \mathbb{C} \equiv V_{\mathbb{C}}$. If $\dim_{\mathbb{R}}(V_{\mathbb{R}}) = n$, then $\dim_{\mathbb{C}}(V_{\mathbb{C}}) = n$. (If $V_{\mathbb{R}} = \operatorname{Span}_{\mathbb{R}}\{v_1, \dots, v_n\}$, then $V_{\mathbb{C}} = \operatorname{Span}_{\mathbb{C}}\{v_1, \dots, v_n\}$.)

For a real bundle $E_{\mathbb{R}}$ of rank n, we can form a *complex bundle* $E_{\mathbb{C}} := E_{\mathbb{R}} \otimes \mathbb{C}$ as follows:

If

$$E_{\mathbb{R}} = \coprod_{\alpha} U_{\alpha} \times \mathbb{R}^{n} / g_{\alpha\beta}$$
 where $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n, \mathbb{R}),$

then

$$E_{\mathbb{C}} = E_{\mathbb{R}} \otimes \mathbb{C} = \coprod_{\alpha} U_{\alpha} \times \mathbb{C}^{n} / g_{\alpha\beta} \qquad \text{where} \quad g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n, \mathbb{R}) \hookrightarrow \mathrm{GL}(n, \mathbb{C}).$$

Therefore we can define the **characteristic classes** for $E_{\mathbb{R}}$ by

$$P(E_{\mathbb{R}}) \equiv P(E_{\mathbb{C}})$$
 for any $GL(n, \mathbb{C})$ -invariant polynomial P .

For example, $c_k^{\mathbb{R}}(E_{\mathbb{R}}) \equiv c_k(E_{\mathbb{C}})$.

Note. We will see that for k odd, $c_k(E_{\mathbb{R}}) = 0$.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address:}$ bradlow@math.uiuc.edu