THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 34

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

April 23, 1998

For a real bundle we defined the k-th Pontrjagin class, $P_k(E_{\mathbb{R}}) \in H^{4k}(B; \mathbb{R})$. We saw that $P_k(E_{\mathbb{R}}) = (-1)^k C_{2k}(E_{\mathbb{C}})$ where $E_{\mathbb{C}}$ was the complexification of $E_{\mathbb{R}}$, $E_{\mathbb{C}} = E_{\mathbb{R}} \otimes \mathbb{C}$. If we start with a complex bundle, E_c , then there is a natural underlying real bundle, E_r , obtained by forgetting the holomorphic structure. Specifically, we identify $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and we embed $GL(n,\mathbb{C}) \to GL(2n,\mathbb{R})$. The inclusion for the case where n = 1 is

$$(z) \mapsto \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

where z = x + iy. The higher dimensional case is similar. If

$$E_c = (\coprod U_{\alpha} \times \mathbb{C}^n)/g_{\alpha\beta},$$

then

$$E_r = (\prod U_{\alpha} \times \mathbb{R}^{2n})/g_{\alpha\beta}^r$$

where the $g_{\alpha\beta}^r$ are the real analogues of $g_{\alpha\beta}$ obtained from the inclusion $GL(n,\mathbb{C}) \to GL(2n,\mathbb{R})$. As for any real bundle, we can define the Pontrjagin classes for E_r .

Question: How are $P_k(E_r)$ and $C_k(E_c)$ related?

Observe that E_c is not $E_r \otimes \mathbb{C}$, for E_c has complex rank n while $E_r \otimes \mathbb{C}$ has complex rank 2n.

Exercise 1. Show that $E_r \otimes \mathbb{C} \cong E_c \oplus \bar{E}_c$ as complex bundles.

We thus get $P_k(E_r) = (-1)^k c_{2k}(E_r \otimes \mathbb{C}) = (-1)^k c_{2k}(E_c \oplus \bar{E}_c)$. It follows that

$$\sum P_k(E_r)(-1)^k = \sum c_{2k}(E_c \oplus \bar{E}_c)$$

Exercise 2. Show that $c_{2k+1}(E \oplus \bar{E}) = 0$. (Hint: $c_l(\bar{E}) = (-1)^l c_l(E)$)

Using this, we can write

$$\sum P_k(E_r)(-1)^k = \sum c_k(E_c \oplus \bar{E}_c) = c(E_c \oplus \bar{E}_c) = c(E_c)c(\bar{E}_c)$$

This answers our question and shows how the $c_k(E_c)$ determine the $P_k(E_r)$.

Note. The inclusion $GL(n,\mathbb{C}) \to GL(2n,\mathbb{R})$ has its image in the component of $GL(2n,\mathbb{R})$ consisting of invertible matrices with positive determinant, $GL^+(2n,\mathbb{R})$. Hence, the image of U(n) lies in SO(2n).

Example 1. U(1) embeds in SO(n) by

$$e^{i\theta} \mapsto \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

So, if

$$E_c = (\prod U_{\alpha} \times \mathbb{C}^n)/g_{\alpha\beta}$$

and

$$E_r = (\coprod U_\alpha \times \mathbb{R}^{2n})/g_{\alpha\beta}^r$$

then $\det(g_{\alpha\beta}^r) > 0$. Similarly, if we put a metric on E_c , then $g_{\alpha\beta}$ is $\mathrm{U}(n)$ -valued and $g_{\alpha\beta}^r$ is $\mathrm{SO}(n)$ -valued.

Definition 1. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is invertible with positive determinant, call T an orientation preserving transformation. Equivantly, if $\{e_i\}$ is a frame in \mathbb{R}^n , then $\{e_i\}$ and $\{Te_i\}$ have the same orientation. If $\det(g_{\alpha\beta} > 0$, then we can consistently assign an orientation to the fibers of E by using the trivializations of the bundle, e.g, if $\psi_b: E_b \to \mathbb{R}^n$ is the isomorphism with $b \in U_\alpha$, then call $\{\psi_\alpha^{-1}e_i\}$ the positively oriented frame for E_b , where $\{e_i\}$ is a standard frame for \mathbb{R}^n .

Definition 2. Call a bundle E orientable if this is possible, i.e, if we can find transition functions $\{g_{\alpha\beta}\}$ with $\det(g_{\alpha\beta}) > 0$.

This is equivalent to the claim that we can pick frames where the transition functions are SO(n)-valued.

Corollary. E_r is always an orientable bundle.

Orientable Bundles

Suppose that $E \to B$ is an orientable bundle; so, the transition functions can be chosen to be SO(n)-valued. In this case, when we check the invariance of a polynomial, $P : Lie(O(n)) \to \mathbb{R}$, we need only check the invariance under conjugation by $T \in SO(n)$.

Note. Not all bundles, E, are orientable. How to determine whether a given bundle is orientable is an interesting question, to which we shall return in the coming lectures.

Question: Are there any P which are SO(n) invariant but not O(n) invariant? If yes, then these define new characteristic classes for orientable bundles which nonorientable bundles will not have.

Answer: As we shall see, when the rank of the bundle is odd, the answer is no. When the rank is even, there is a new class, called the *Euler class*, e(E).

We saw in the previous lecture that A is O(n) equivalent (under conjugation) to a matrix of one of two types and that $P(A) = P(\lambda_1, \ldots, \lambda_n)$ where P is an O(n) invariant polynomial. Furthermore, we saw that this was symmetric in the $\{\lambda_i^2\}$.

Case n=2

$$\begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix}$$

via

$$T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

But, det(T) = -1 and so $T \in O(n)$, $T \notin SO(n)$.

Case n=3

$$\begin{pmatrix}
0 & \lambda & 0 \\
-\lambda & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \mapsto
\begin{pmatrix}
0 & -\lambda & 0 \\
\lambda & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

via

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$$

If we choose -1, then $T \in SO(n)$.

In general, if n is odd, then SO(n) invariance implies the symmetry under $\{\lambda_i^2\}$, which implies O(n) invariance. If n is even, this won't happen.

Claim. If P is SO(n) invariant, then we can write P as $P = P_0 + P_1$ where

- (1) P_0 is O(n) invariant.
- (2) $P_1(gAg^{-1}) = (det(g))P_1(A)$ for all $g \in O(n)$.

Proof: Pick $g_0 \in O(n) - SO(n)$. Write

$$P(A) = \frac{P(A) + P(g_0 A g_0^{-1})}{2} + \frac{P(A) - P(g_0 A g_0^{-1})}{2}$$

Then

$$P_0(A) = \frac{1}{2}(P(A) + P(g_0 A g_0^{-1}))$$

and

$$P_1(A) = \frac{1}{2}(P(A) - P(g_0 A g_0^{-1}))$$

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address:}$ bradlow@math.uiuc.edu