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Suppose F — B is a rank n = 2m bundle and that P is a SO(n) invariant polynomial on {A + A* =
0} = Lie(O(n)). Then P(A) = Py(A) + P1(A) where Py is a fully O(n) invariant polynomial and P, is a
SO(n) invariant polynomial. We saw that det(g)Pi(A) = P1(gAg™1) for g € O(n).

Example 1. Define e(A4) as follows. Fix an oriented, orthonormal basis for R?" say {e;}. Let Ae; = Ajje;.
Define

a(A4) = ZAijei Nej € /\(Rzm)

i<

[If A is a matrix of standard type I, then a direct calculation shows that

a(A) = Z Tieai—1 A ea;)
i=1

Set
1
e(A) = $(Q(A)m, €1 A A 62m)
where (, ) is the inner product on Azm(Rzm). [For A as above we get that

O‘(A)m = m!(l‘1l‘2 o Tmer A A 62m)

So, e(A) =1 ...4m.]

FEzercise 1. Show that
(1) e(gAg=1) = e(A)det(g) for g € O(n).
(2) e?(A) = det(A).

Fact: Any SO(n) invariant polynomial can be written as P(A4) = e(A)p(A) where P is a O(n) invariant
polynomial.

Typeset by ApS-TEX



Definition 1. Given an oriented real vector bundle £ — B of rank n = 2m, we define the Fuler class by

e(%F) where F' is the curvature of any orthogonal connection with respect to an oriented, orthonormal

frame.

Note.
(1) If the rank of E is n = 2m, then e(E) € H*™(B;R). In fact, e(E) € H*™(B;Z).
(2) The Euler class distributes nicely across sums. That is, e(E) & E2) = e(Fy)e(Fs).

Special Case: Suppose that I/ = F, is the underlying real bundle of a complex bundle E.. From
previous lectures, F, 1s orientable and if E. has complex dimension m, then FE, has real dimension 2m.

Question: How is e(F,) related related to the Chern classes of F.?
Clue: e?(A) = det(A). Also, det(I + A) = 1+ -+ det(A). So, e?(E,) = Pn(E,). Also,

D PE)(D = (L e(B) + - em(B)(L = er(Ee) + -+ (=) em(E2))
k=0
This implies that Pp(FE,)(=1)" = (=1)"¢2,(E.). So, e*(E,) = ¢2,(E.). In fact, we shall see that e(E,) =
em(FE.), where F, has a standard orientation induced by E..
The orientation on IR?™ induced by an orientation from C™ is obtained as follows. Choose a basis {eq }7,
for C™ over C. Then {e,,ie,}T, is a basis for R?™. The orientation on R?™ is obtained by declaring that
this basis is positively oriented.

Under this choice of frames, the inclusion GL(m, C) — GL(2m,R) yields

=
Ay Al
o 7 0
—
iAm Am
o AO — 3
o 0
It follows from this that
m Ec — e Er
en(5) = ][ -5 = (5

Note. The signs have been chosen so that this holds. If we change the orientation of E, then e(F) will
change signs.
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