THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 38

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

May 1, 1998

<u>Last time</u>: We saw that the obstruction to orientability of a vector bundle $E \to B$ is the first Stiefel-Whitney class $w_1(E) \in H^2(B, \mathbb{Z}_2)$.

Suppose that $w_1(E) = 0$, so that we can write $E = \coprod U_{\alpha} \times \mathbb{R}^n / g_{\alpha\beta}$, $g_{\alpha\beta} \in \underline{SO(n)}$. In this case, we can look for a more subtle structure called a **spin structure**.

Spin Structures

Replace E by principal SO(n)-bundle:

$$P_{SO(n)} = \coprod U_{\alpha} \times SO(n)/g_{\alpha\beta}$$
.

Key Facts:

- For n > 2, $\pi_1(SO(n)) = \mathbb{Z}_2$.
- There exists a simply connected Lie group Spin(n) such that

$$1 \to \mathbb{Z}_2 \to \operatorname{Spin}(n) \xrightarrow{\rho} \operatorname{SO}(n) \to 1$$
,

that is, ρ is a double cover and group homomorphism.

Example 1. Spin(2) =
$$S^1$$
. ($S^1 o S^1$ via $z \mapsto z^2$.)

Example 2. Spin(3) = SU(2) = 2×2 unitary complex matrices with determinant 1.

To see $Spin(3) \rightarrow SO(3)$:

• $A \in SU(2)$ can be written as

$$A = \begin{bmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{bmatrix}$$

with $|z_1|^2 + |z_2|^2 = 1$. So

(1)
$$SU(2) \cong \{ (z_1, z_1) : |z_1|^2 + |z_2|^2 = 1 \} \cong S^3$$
$$\cong \{ q = z_1 + jz_2 \in \mathbb{H} : |q|^2 = 1 \},$$

under $\mathbb{C}^2 \cong \mathbb{H} = \mathbb{R} \oplus i\mathbb{R} \oplus j\mathbb{R} \oplus k\mathbb{R}$ and $q = z_1 + jz_2$.

• Define

$$SU(2) \times \mathbb{H} \to \mathbb{H}$$

 $(q_0, q) \mapsto q_0 q q_0^{-1}$

Let $\mathbb{R}^3 = \operatorname{Im} \mathbb{H} = i \mathbb{R} \oplus j \mathbb{R} \oplus k \mathbb{R}$. Then the unit quaternians act on $\operatorname{Im} \mathbb{H} = \mathbb{R}^3$ by

(2)
$$\operatorname{SU}(2) \times \operatorname{Im} \mathbb{H} \to \operatorname{Im} \mathbb{H}$$

$$(q_0, x) \mapsto q_0 x q_0^{-1} (= q_0 x \overline{q}_0 \text{ if } |q_0|^2 = 1)$$

This defines an action of SU(2) on \mathbb{R}^3 . In fact, if $|q_0| = 1$ and $x \in \text{Im } \mathbb{H} \cong \mathbb{R}^3$, then $x \stackrel{A_{q_0}}{\mapsto} q_0 x q_0^{-1}$ is an SO(3) transformation.

Claim:

$$SU(2) \to SO(3)$$

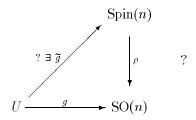
 $q_0 \mapsto A_{q_0}$

is the 2:1 double cover $(A_{q_0} = A_{-q_0})$. Hence the map $q_0 \mapsto A_{q_0}$ is the map we want!

Example 3. $Spin(4) = SU(2) \times SU(2)$.

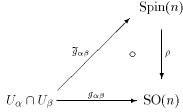
Remark. Given $\operatorname{Spin}(n) \xrightarrow{\rho} \operatorname{SO}(n)$ and $g \in \operatorname{SO}(n)$, we can always find $\widetilde{g} \in \operatorname{Spin}(n)$ such that $\rho(\widetilde{g}) = g$.

How about



If U is contractible, then we can do it!

Apply this to $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{SO}(n)$ in the given principal bundle $P_{\mathrm{SO}(n)} = \coprod U_{\alpha} \times \mathrm{SO}(n)/g_{\alpha\beta}$ (assuming $\{U_{\alpha\beta}\}$ is "nice"). Thus we can lift $g_{\alpha\beta}$ to $\widetilde{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{Spin}(n)$ if $U_{\alpha} \cap U_{\beta}$ is contractible. That is, the diagram commutes:



Question: Do the transition functions $\{\widetilde{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{Spin}(n)\}\$ define a $\operatorname{Spin}(n)$ bundle, i.e., do we get

$$P_{\mathrm{Spin}(n)} = \coprod U_{\alpha} \times \mathrm{Spin}(n) / \widetilde{g}_{\alpha\beta} ?$$

If **YES**, then such a lift defines a **Spin structure** on ρ and we have $P_{\text{Spin}(n)} \xrightarrow{\rho} P_{\text{SO}(n)}$, 2:1 on each lift.

We require (the cocycle condition) $\widetilde{g}_{\alpha\beta} \ \widetilde{g}_{\beta\gamma} \ \widetilde{g}_{\gamma\alpha} = I$ (in Spin(n)).

How to Detect Obstruction:

Given $\{g_{\alpha\beta}\}$, we can pick a system of lifts $\{\widetilde{g}_{\alpha\beta}\}$. Define $h_{\alpha\beta\gamma} := \widetilde{g}_{\alpha\beta} \ \widetilde{g}_{\beta\gamma} \ \widetilde{g}_{\gamma\alpha}$ for $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$. Note. $h_{\alpha\beta\gamma} \in \text{Spin}(n)$ but $\rho(h_{\alpha\beta\gamma}) = g_{\alpha\beta} \ g_{\beta\gamma} \ g_{\gamma\alpha} = I \in \text{SO}(n)$. So $h_{\alpha\beta\gamma} \in \rho^{-1}(I) \cong \mathbb{Z}^2$

So $h^{(2)} = \{h_{\alpha\beta\gamma}\}$ defines a Čech 2-cochain.

Key Facts. (With $h_{\alpha\beta\gamma} = e^{i\pi w_{\alpha\beta\gamma}}$ defining $w^{(2)}$.)

$$\delta w^{(2)} = 0$$

so

$$[w^{(2)}] \in \check{H}^{(2)}(B, \mathbb{Z}_2)$$

is the obstruction!

If $[w^{(2)}] = 0$, then there exists $\{\lambda_{\alpha\beta}\} = \lambda^{(1)}$ a 1-cochain such that $w^{(2)} = \delta(\lambda^{(1)})$.

FACT. The class $[w^{(2)}] = w_2(P_{SO(n)}) \in H^2(B, \mathbb{Z}_2)$ is the second Stiefel-Whitney class.

 $P_{SO(n)}$ admits a spin structure $\iff w_2(P_{SO(n)}) = 0$.

Definition 1. An orientable manifold M is spin if a principal SO(n) frame bundle admits a lift to a principal Spin(n) bundle $(\iff w_2(TM) \equiv w_2(M) = 0)$.

Examples.

- (1) S^m is spin.
- (2) All orientable Riemann surfaces, Σ^g , are spin.
- (3) $\mathbb{CP}(k)$ is spin $\iff k$ is odd. ($\mathbb{CP}(2)$ is **NOT** spin!)
- (4) All Lie groups are spin.

Remark. If M is spin and P_{Spin} is a lift of SO(n) (bundle of frames), we can get associated vector bundles

$$S = P_{\text{Spin}} \times_{\rho} V$$

where $\rho : \operatorname{Spin}(n) \to \operatorname{Aut}(V)$ defines **representation of spin ("Spin Bundle").**

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E{\text{-}mail\ address:}$ bradlow@math.uiuc.edu