THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 40

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

May 6, 1998

Last time we defined $\mathrm{Spin}_C(n) = \mathrm{Spin}(n) \times_{\mathbb{Z}_2} S^1$. $\mathrm{Spin}_{\mathbb{C}}(n)$ was a double cover of $\mathrm{SO}(n) \times S^1$ via $[\tilde{g}, \lambda] \mapsto (g, \lambda^2)$. Given $P_{\mathrm{SO}(n)}$ (of the associated vector bundle E) and L (a complex line bundle with a Hermitian metric) over B with transition functions $\{g_{\alpha\beta}\}$ and $\{l_{\alpha\beta}\}$, if we $U_{\alpha} \cap U_{\beta}$ is contractible, then we can lift

and

Write $l_{\alpha\beta} = e^{i\pi x_{\alpha\beta}}$. Then,

- (1) The cocycle condition on the $l_{\alpha\beta}$ says that $x_{\alpha\beta} + x_{\beta\gamma} + x_{\gamma\alpha} \in 2\mathbb{Z}$ for all α, β, γ with $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$.
- (2) $l_{\alpha\beta} = e^{i\pi x_{\alpha\beta}/2}$.

We thus get

$$l_{\alpha\beta}^{1/2}l_{\beta\gamma}^{1/2}l_{\gamma\alpha}^{1/2} = e^{i\pi w_{\alpha\beta\gamma}/2}$$

where

$$w_{\alpha\beta\gamma} = x_{\alpha\beta} + x_{\beta\gamma} + x_{\gamma\alpha}$$

Define

$$\Gamma_{\alpha\beta\gamma} = \tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha} \in \mathbb{Z}_2$$

and

$$c_{\alpha\beta\gamma} = \frac{w_{\alpha\beta\gamma}}{2} \in \mathbb{Z}$$

In order for

$$[\tilde{g}_{\alpha\beta}, l_{\alpha\beta}^{1/2}] \in \operatorname{Spin}_{\mathbb{C}}(n)$$

to define a $\mathrm{Spin}_{\mathbb{C}}(n)$ -bundle, $P_{\mathrm{Spin}_{\mathbb{C}}}$, (e.g, a double cover $P_{\mathrm{Spin}_{\mathbb{C}}} \to P_{\mathrm{SO}(n)} \times L$), we need

$$[\Gamma_{\alpha\beta\gamma}, c_{\alpha\beta\gamma}] = 1\operatorname{Spin}_{\mathbb{C}}(n)$$

i.e, $\Gamma_{\alpha\beta\gamma} = 1$ and $c_{\alpha\beta\gamma} \equiv 0 \mod 2$ or $\Gamma_{\alpha\beta\gamma} = -1$ and $c_{\alpha\beta\gamma} \equiv 1 \mod 2$.

We have that $\Gamma = \{\Gamma_{\alpha\beta\gamma}\}$ defines a \mathbb{Z}_2 Čech cochain and $C = \{c_{\alpha\beta\gamma}\}$ defines a \mathbb{Z} Čech cochain. If $\bar{c}_{\alpha\beta\gamma}$ is the \mathbb{Z}_2 reduction of $c_{\alpha\beta\gamma}$, then $\bar{C} = \{\bar{c}_{\alpha\beta\gamma}\}$ defines a \mathbb{Z}_2 Čech cochain. The condition that we want is $\Gamma + \bar{C} = 0$. Hence, these define cohomology classes and $[\Gamma] = [\bar{C}] \in H^2(B; \mathbb{Z})$.

Fact: $[\Gamma] = w_2(E)$ and $[C] \in H^2(B; \mathbb{Z})$ is the first chern class, $c_1(L)$.

We thus express the condition for the existence of $\operatorname{Spin}_{\mathbb{C}}$ structures as $c_1(L) \equiv w_2(E) \mod 2$. Given an oriented manifold M, if we can find a complex line bundle $L \to M$ such that $c_1(L) \equiv w_2(M) \mod 2$, then (M, L) admits a $\operatorname{Spin}_{\mathbb{C}}$ structure; i.e, $TM \times L$ admits a lift. If M is Spin , then we can take $L = M \times \mathbb{C}$ and use the P_{Spin} lift to construct $P_{\operatorname{Spin}_{\mathbb{C}}}$. If $w_2(M) \neq 0$, then we may still be able to get a $\operatorname{Spin}_{\mathbb{C}}$ structure.

Equations over Bundles

Suppose that $E \to B$ is a smooth vector bundle with a metric and structure group U(n). We would like to find *special* connections on E. The idea of special needs to be codified.

Given $D \in \mathcal{A} = \{$ unitary connections $\}$, we get that the curvature is an $\operatorname{End}(E)$ valued 2-form; i.e, $F_D \in \Omega^2(\operatorname{End}(E))$. Given any metric on E and a metric on E (and hence on $\operatorname{End}(E)$), we can measure the length of F_D , $|F_D|$.

We can define the Yang-Mills functions,

$$YM(D) = \int_{B} |F_{D}| \, dvol = ||F_{D}||_{l^{2}}^{2}$$

This defines a map, $YM: \mathcal{A} \to \mathbb{R}$.

The special connections on E are the critical points of YM. In certain special cases, e.g, when B is a 4-manifold and E is rank 2, you can identify a condition for the minimizers of YM. This is expressed as a certain set of partial differential equations called the Anit-Self Dual Equations (ASD). The solutions to the ASD equations are called *instantons*.

Facts: The set, {instantons} is a moduli space (a nice geometric object). This can be used to define algebraic-topological invariants of B.

Given a 4-manifold M, erect $E \to M$ with metrics. Take \mathcal{A} to be the connections as before and look at the moduli space of instantons. This defines algebraic-topological invariants of M.

Alternatively, we can take a metric on M and look at $\Omega^p(M)$. Consider Laplaces equation, $dd^* = d^*d = 0$. The space of solutions consists of p-harmonic forms, \mathcal{H}^p . The dimension, $\dim \mathcal{H}^p = b_p$ is an interesting invariant.

The new version of the two above construction goes like this. Start with a line bundle $L \to M$ with $c_1(L) \equiv w_2(M) \mod 2$. We get a $\operatorname{Spin}_{\mathbb{C}}$ structure associated to (M, L). There are two distinguished one, S^+ and S^- , both rank 2 spinor bundles. We get the ASD equations for a connection D_L on L and a section $\Phi \in \Omega^0(S^+)$. Solutions to these yield more invariants.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address:}$ bradlow@math.uiuc.edu