THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 5

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 2, 1998

Recall that we can describe a vector bundle, $\pi: E \to B$, in terms of local trivializations over a cover of B together with transition functions, $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n,\mathbb{R})$, where n is the ranks of the bundle. We had that

$$E = (\coprod U_{\alpha} \times \mathbb{R}^n) / \{g_{\alpha\beta}\}$$

Similarly, for principal bundles,

$$P = (\prod U_{\alpha} \times G)/\{g_{\alpha\beta}\}$$

where $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$ and the relation was $(b, v)_{\alpha} \sim (b, g_{\beta\alpha}(b) \cdot v)_{\beta}$.

An important observation can be made here. Given a vector bundle, $\pi: E \to B$ given by

$$\{g_{\alpha\beta}: U_{\alpha}\cap U_{\beta} \to \mathrm{GL}(n,\mathbb{R})\}$$

we can build a principal $GL(n,\mathbb{R})$ -bundle. Set

$$P = (\prod U_{\alpha} \times \operatorname{GL}(n, \mathbb{R})) / \{g_{\alpha\beta}\}$$

We say that E is associated to P. A natural question to ask is if the converse holds. That is, given a principal G-bundle, $\pi: P \to B$, can we build an associated vector bundle? To build such a bundle, we need a group representation, $\rho: G \to \operatorname{GL}(V)$ for some vector space V.

Example 1. If $G = GL(n, \mathbb{R})$, then just use the standard representation on \mathbb{R}^n . If G = O(n), then we may embed O(n) in $GL(n, \mathbb{R})$ and use the composite representation. If G = U(n), the unitary group, we get, via the embedding of U(n) into $GL(n, \mathbb{C})$, a representation on \mathbb{C}^n . We can get a real representation by thinking of $GL(n, \mathbb{C})$ as a subgroup of $GL(2n, \mathbb{R})$.

We define

$$E = (\coprod U_{\alpha} \times V) / \{ \rho(g_{\alpha\beta}) \},$$

where

$$\rho(g_{\alpha\beta}): U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(n,\mathbb{R})$$

The cocycle condition is easily verifed, for,

$$\rho(g_{\alpha\beta})\rho(g_{\beta\gamma})\rho(g_{\gamma\alpha}) = \rho(g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}) = \rho(\mathrm{Id}) = \mathrm{Id}$$

Thus far, we have concentrated on local descriptions of associated bundles. It is also useful to have a global description of such things. To do so, we need the following defintion.

Definition 1. Given $\pi: P \to B$ a principal G-bundle and a representation $\rho: G \to \operatorname{GL}(V)$, we define the product of P and V over G by

$$E = P \times_G V$$
,

where E is a quotient of $P \times V$ under the relation $(p, v) \sim (p \cdot g, \rho(g^{-1})v)$ for all $g \in G$.

Claim. Under $[(p,v)] \mapsto \pi(p)$, we get a vector bundle, $E \to B$ with fiber V. Furthermore, if

$$P = (\prod U_{\alpha} \times G) / \{g_{\alpha\beta}\}$$

then

$$E = (\coprod U_{\alpha} \times V) / \{ \rho(g_{\alpha\beta}) \}$$

That is, the two constructions are the same.

Exercise 1. Prove the above claim. Hint: We can identify

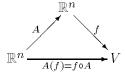
$$(U_{\alpha} \times G) \times_G V \to U_{\alpha} \times V$$

by $[((b,u)_{\alpha},v)] \mapsto (b,\rho(u)v)$ with inverse map $(b,v) \mapsto [((b,e),v)]$, where $e \in G$ is the group identity.

We now give a geometric interpretation of the principal $GL(n,\mathbb{R})$ bundle associated to a rank n vector bundle $\pi: E \to B$.

Definition 2. Given a real vector space V of dimension n, a frame for V is an identification of \mathbb{R}^n with V, $f: \mathbb{R}^n \to V$. This is equivalent to choosing a basis; that is, if $\{e_i\}$ is the standard basis for \mathbb{R}^n , then $\{f(e_i)\}$ is the basis we have chosen for V. Define F(V) to be the set of all frames of V.

Observe that $GL(n, \mathbb{R})$ acts on F(V) by:



Exercise 2. Show that $F(V) \cong GL(n,\mathbb{R})$.

For a vector bundle, $\pi: E \to B$ and for each $b \in B$, we have that $E_{|b} \cong GL(n, \mathbb{R})$. So, we get a copy of $GL(n, \mathbb{R})$ attached to each b via $F(E_{|b}) = P_b$.

Claim. If

$$\bigcup_{b \in B} P_b = P$$

then P is a principal $GL(n,\mathbb{R})$ -bundle. This is the same as the previous construction. This is called the principal frame bundle, or the principal bundle of frames.

Proof: The proof is left as an exercise, with the following hint. Say

$$E = (\coprod U_{\alpha} \times \mathbb{R}^n) / \{g_{\alpha\beta}\}$$

with trivializing maps, $\psi_{\alpha}: E|U_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$. Use $\psi_{\alpha}^{-1}(b)(): \mathbb{R}^{n} \to E_{b}$ to define a frame, f. We then get a description of P_{b} as

$$P_b = \{ f_\alpha \circ A : A \in \mathrm{GL}(n, \mathbb{R}) \},\$$

and hence, $P|U_{\alpha} \cong U_{\alpha} \times \mathrm{GL}(n,\mathbb{R})$ via the map $(b,A) \mapsto f_{\alpha}(b)A$. Notice that the P_b carries a right action of $\mathrm{GL}(n,\mathbb{R})$.

Exercise 3. Show that P also carries a right action.

Exercise 4. Check the transition function conditions.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 E-mail address: bradlow@math.uiuc.edu