THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 6

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 4, 1998

Recall that given a rank n vector bundle, we were able to construct a principal $GL(n,\mathbb{R})$ bundle. Furthermore, given a principal G-bundle, P, and a representation $\rho: G \to GL(V)$, we constructed a vector bundle, $E = P \times_G V = P \times_\rho V$. Furthermore, if V is of rank n, then

$$E = (\prod U_{\alpha} \times \mathbb{R}^n) / \{g_{\alpha\beta}\}$$

where the $g_{\alpha\beta}: U_{\alpha} \to U_{\beta} \to \rho(G) \subseteq GL(n,\mathbb{R})$ are the transition functions. In general, we say that the structure group of a bundle can be reduced if its structure group G is a subset of $GL(n,\mathbb{R})$. In general, a vector bundle can be reduced from $GL(n,\mathbb{R})$ to some subgroup, G, if and only if we can find a system of local trivializations such that all transition functions take their values in G.

Local Description of a Section

Suppose that a vector bundle, $\pi: E \to B$, is described as

$$E = (\prod U_{\alpha} \times \mathbb{R}^n) / \{g_{\alpha\beta}\}$$

and that $\sigma: B \to E$ is a section. Let $\psi_{\alpha}: E_{|U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{n}$ be the trivializing maps. We had that the following diagram was commutative:

$$U_{\alpha} \xrightarrow{\sigma} U_{\alpha} V_{\alpha} \times \mathbb{R}^{n}$$

Use the fiber preserving properties of the maps involved to check that $\sigma_{\alpha}(b) = (b, s_{\alpha}(b))$ where $s_{\alpha} : U_{\alpha} \to \mathbb{R}^n$. Now, σ determines a collection of local sections,

$$\{\sigma: U_{\alpha} \to \mathbb{R}^n\}$$

one for each trivializing open set.

The natural question to ask here is if given a collection of local sections, $\{\sigma_{\alpha}: U_{\alpha} \to \mathbb{R}^n\}$, one for each trivializing open set, when does the collection determine a global section, $\sigma: B \to E$ with $\sigma_{|U_{\alpha}} = \sigma_{\alpha}$? On $U_{\alpha} \cap U_{\beta} = U_{\alpha\beta}$, we have the following commutative diagram:

Writing $g_{\beta\alpha} = \psi_{\beta}\psi_{\alpha}^{-1}$, we see that $s_{\beta} = g_{\beta\alpha}s_{\alpha}$. Hence, given a collection of local sections, $\{\sigma_{\alpha}(b) = (b, s_{\alpha}(b))\}$ such that $s_{\beta}(b) = g_{\beta\alpha}(b)s_{\alpha}(b)$, then they define a global section by defining $\sigma(b) = \psi_{\alpha}^{-1} \circ \sigma_{\alpha}(b)$.

Example 1. Set $s_{\alpha}(b) = 0$ for all $b \in U_{\alpha}$. This defines the local zero section and the collection $\{s_{\alpha}\}$ will glue together to define the global zero section.

Observe that the same analysis of sections for vector bundles applies to sections of principal G-bundles. In other words, given a principal G-bundle, described by

$$P = (\prod U_{\alpha} \times G)/\{g_{\alpha\beta}\},\$$

the description of a section is the same as above, but with \mathbb{R}^n replaced by G. Now, in the relation, $s_{\beta} = g_{\beta\alpha}s_{\alpha}$, the multiplication on the right hand side is group multiplication. Conversely, using a section, say σ , the transition functions can be written as $g_{\beta\alpha} = s_{\beta}s_{\alpha}^{-1}$. The significance of this will become clear shortly.

A Return to Bundle Maps

Suppose that we have a bundle map,

with

$$E = (\coprod U_{\alpha} \times \mathbb{R}^{n})/\{g_{\alpha\beta}\}$$
$$E' = (\coprod U_{\alpha} \times \mathbb{R}^{m})/\{g'_{\alpha\beta}\}$$

Then, we have the following commutative diagram specified by the trivializations for E and E' respectively,

$$E|U_{\alpha} \stackrel{h}{\longleftarrow} E'|U_{\alpha}$$

$$\psi_{\alpha} \qquad \qquad \psi_{\alpha} \qquad$$

Exercise 1. Show that we can regard $h_{\alpha}: U_{\alpha} \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$. That is, we can think of h as an element of $\operatorname{Mat}_{n,m}(\mathbb{R})$, real n by m matrices.

The exercise says that given h, we obtain a set, $\{h_{\alpha}: U_{\alpha} \to \text{Hom}(\mathbb{R}^n, \mathbb{R}^m)\}$. How are h_{α} and h_{β} related? Using the transition functions from E and E' respectively, we require that the following diagram commute:

Consider the special case of E=E'. Then h is a bundle endomorphism and

$$h_{\alpha}: U_{\alpha} \to \operatorname{End}(\mathbb{R}^n, \mathbb{R}^n) \cong \operatorname{Mat}_{n,n}(\mathbb{R})$$

are such that $h_{\beta}g_{\beta\alpha}=g_{\beta\alpha}h_{\alpha}.$ If h is, in fact, a bundle automorphism then,

$$h_{\beta} = g_{\beta\alpha}h_{\alpha}g_{\beta\alpha}^{-1} = g_{\beta\alpha}h_{\alpha}g_{\alpha\beta}$$

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E{\text{-}mail\ address:}$ bradlow@math.uiuc.edu