THE GEOMETRY OF VECTOR BUNDLES AND AN INTRODUCTION TO GAUGE THEORY LECTURE 9

Professor Steven Bradlow Class Notes From Math 433

University of Illinois at Urbana-Champaign

February 11, 1998

New Bundles From Old Bundles II

Given two bundles

$$E = (\prod U_{\alpha} \times \mathbb{R}^n)/\{g_{\alpha\beta}\}\$$

and

$$F = (\prod U_{\alpha} \times \mathbb{R}^n)/\{h_{\alpha\beta}\}.$$

Claim. There exists a bundle Hom(E, F) such that $rank = n \cdot m$ and $\text{Hom}(E, F)_b = \text{Hom}(E_b, F_b)$.

Proof: There are two points of view.

(1) For vector spaces V and W, $\text{Hom}(V, W) \cong W \otimes V^*$.

Exercise 1. Show that $\operatorname{Hom}(V, W) \cong W \otimes V^*$.

We can define

$$\operatorname{Hom}(E,F) := F \otimes E^*$$

which has the properties: (i) rank nm, (ii) fiber $(F \otimes E^*)_b = F_b \otimes E_b^*$, and (iii) transition functions $h_{\alpha\beta} \otimes g_{\alpha\beta}^{t-1}$. (2) More directly: We can identify Hom(E,F) by looking at its sections.

Exercise 2. Show that $s \in \Gamma(\operatorname{Hom}(E, F)) \iff s : E \to F$ is a bundle map. Using local trivializations, bundle maps can give local descriptions

$$s_{\alpha}: U_{\alpha} \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$$

with

$$(*) s_{\beta} = h_{\beta\alpha} s_{\alpha} g_{\beta\alpha}^{-1}.$$

Question: For which bundle is (*) the description of a section? Answer: Take principal bundles

$$P_F = \coprod U_{\alpha} \times \mathrm{GL}(m)/\{h_{\alpha\beta}\}$$

and

$$P_E = \prod U_{\alpha} \times GL(n)/\{g_{\alpha\beta}\}.$$

Define

$$P = P_F \times P_E = \prod U_{\alpha} \times (GL(m) \times GL(n)) / \{h_{\alpha\beta} \times g_{\alpha\beta}\}.$$

Take the representation of $\mathrm{GL}(m) \times \mathrm{GL}(n)$ on $\mathrm{Hom}(\mathbb{R}^n,\mathbb{R}^m)$ given by

$$\rho: \operatorname{GL}(m) \times \operatorname{GL}(n) \xrightarrow{\operatorname{Ad}} \operatorname{GL}(\operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)),$$

that is, such that $\rho(A, B)(U) = A \circ U \circ B^{-1}$. Then the bundle we want is

$$\operatorname{Hom}(E, F) \equiv P \times_{\operatorname{Ad}} \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m).$$

Exercise 3. Show that sections of this are given by (*).

Exercise 4. Show that $\operatorname{Hom}(E,F) \cong E^* \otimes F!$

Remark. The case E = F is an important special case. In this case, Hom(E, E) = End(E).

Exercise 5. Show that $\operatorname{End}(E) = P_E \times_{\operatorname{Ad}} \operatorname{Mat}_n$, where

$$Ad : GL(n) \longrightarrow GL(Mat_n)$$
$$A \longmapsto (U \mapsto A \circ U \circ A^{-1}).$$

Note. If we define $\operatorname{Aut}(E)$ to be the bundle of isomorphisms of E such that $\operatorname{Aut}(E)|_p = \operatorname{Aut}(E_p)$, then $\operatorname{Aut}(E) = P_E \times_{\operatorname{Ad}} \operatorname{GL}(n)$ is a bundle of groups, but not quite a principal bundle (transition functions are not quite by left action of structure group on fibers). If \mathfrak{G} is the space of sections of $\operatorname{Aut}(E)$, then \mathfrak{G} can be given a group structure using fiberwise identifications $\operatorname{Aut}(E|_P) \simeq \operatorname{GL}(n)$. The group \mathfrak{G} is the **gauge group** of E.

Kernel, Image, and Cokernel Bundles

Given a bundle map

Define

$$(\operatorname{Ker}(f))_b := \operatorname{Ker}(f_b : E_b \to F_b)$$

$$(\operatorname{Im}(f))_b := \operatorname{Im}(f_b : E_b \to F_b)$$

$$(\operatorname{Coker}(f))_b := F_b/(\operatorname{Im}(f)_b)$$

Questions:

- (1) Is $\cup_{b \in B} (\operatorname{Ker}(f))_b := \operatorname{Ker}(f)$ a bundle over B? (i.e. a subbundle of E.)
- (2) Is $\bigcup_{b \in B} (\operatorname{Im}(f))_b := \operatorname{Im}(f)$ a subbundle of F?
- (3) What about $\cup_{b \in B}(\operatorname{Coker}(f))_b := \operatorname{Coker}(f)$?

Answers: In general, the answers are <u>not</u> **YES**. For example, take trivial bundles:

and define $f(x) = x \cdot I_n$. (It is certainly a bundle map.) Then

$$(\operatorname{Ker}(f))_x = \begin{cases} 0, & \text{for } x \neq 0 \\ \mathbb{R}^n, & \text{for } x = 0. \end{cases}$$

So fiber dimensions can jump!

Theorem 1. If Rank f_b is <u>constant</u>, then Ker f, Im f, and Coker f are bundles.

Note. The proof uses "Constant Rank Theorem" for bundle maps. It amounts to showing that trivializations for E and F can be chosen so on each U_{α} ,

$$E_b \xrightarrow{\simeq^{\Psi_\alpha}} \mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^{n-k},$$

where $\mathbb{R}^k = \text{Ker}(f_\alpha)$, and

$$F_b \xrightarrow{\cong^{\Phi_\alpha}} \mathbb{R}^m = \mathbb{R}^i \oplus \mathbb{R}^{m-i},$$

where $\mathbb{R}^i = \text{Im}(f_\alpha)$. Then, on $U_\alpha \cap U_\beta$, we have the commutative diagram (w.r.t. given decompositions of \mathbb{R}^n):

$$\mathbb{R}^{k} \oplus \mathbb{R}^{n-k} \xrightarrow{f_{\alpha}} \mathbb{R}^{i} \oplus \mathbb{R}^{m-i}$$

$$\downarrow h_{\beta\alpha}$$

$$\mathbb{R}^{k} \oplus \mathbb{R}^{n-k} \xrightarrow{f_{\beta}} \mathbb{R}^{i} \oplus \mathbb{R}^{m-i}$$

$$g_{\beta\alpha} = \begin{pmatrix} k_{\beta\alpha} & \Lambda_{\beta\alpha} \\ 0 & C_{\beta\alpha} \end{pmatrix}$$

$$h_{\beta\alpha} = \begin{pmatrix} i_{\beta\alpha} & \Pi_{\beta\alpha} \\ 0 & D_{\beta\alpha} \end{pmatrix}$$

with

Note. $\{k_{\beta\alpha}\}\$ are transition functions for Ker f. Similarly for Im f and Coker f.

Exercise 6. Using orthonormal frames (assuming E and F have matrices), we can assume $g_{\beta\alpha} \in O(n)$ and $k_{\beta\alpha} \in O(n)$. Show that it follows that $\Lambda_{\beta\alpha} = 0$ and $\Pi_{\beta\alpha} = 0$.

273 ALTGELD HALL, 1409 W. GREEN STREET, URBANA, IL 61801 $E\text{-}mail\ address: bradlow@math.uiuc.edu}$